Closed‐loop one‐way‐travel‐time navigation using low‐grade odometry for autonomous underwater vehicles

This paper extends the progress of single beacon one‐way‐travel‐time (OWTT) range measurements for constraining XY position for autonomous underwater vehicles (AUV). Traditional navigation algorithms have used OWTT measurements to constrain an inertial navigation system aided by a Doppler Velocity L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of field robotics 2018-06, Vol.35 (4), p.421-434
Hauptverfasser: Claus, Brian, Kepper, James H., Suman, Stefano, Kinsey, James C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 434
container_issue 4
container_start_page 421
container_title Journal of field robotics
container_volume 35
creator Claus, Brian
Kepper, James H.
Suman, Stefano
Kinsey, James C.
description This paper extends the progress of single beacon one‐way‐travel‐time (OWTT) range measurements for constraining XY position for autonomous underwater vehicles (AUV). Traditional navigation algorithms have used OWTT measurements to constrain an inertial navigation system aided by a Doppler Velocity Log (DVL). These methodologies limit AUV applications to where DVL bottom‐lock is available as well as the necessity for expensive strap‐down sensors, such as the DVL. Thus, deep water, mid‐water column research has mostly been left untouched, and vehicles that need expensive strap‐down sensors restrict the possibility of using multiple AUVs to explore a certain area. This work presents a solution for accurate navigation and localization using a vehicle's odometry determined by its dynamic model velocity and constrained by OWTT range measurements from a topside source beacon as well as other AUVs operating in proximity. We present a comparison of two navigation algorithms: an Extended Kalman Filter (EKF) and a Particle Filter(PF). Both of these algorithms also incorporate a water velocity bias estimator that further enhances the navigation accuracy and localization. Closed‐loop online field results on local waters as well as a real‐time implementation of two days field trials operating in Monterey Bay, California during the Keck Institute for Space Studies oceanographic research project prove the accuracy of this methodology with a root mean square error on the order of tens of meters compared to GPS position over a distance traveled of multiple kilometers.
doi_str_mv 10.1002/rob.21746
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047447689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047447689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4376-66fe69dfb4fa2038e46a1dd5de54be3b04e9430e8080147930e9538aefbea4fb3</originalsourceid><addsrcrecordid>eNp1kM9Kw0AQhxdRsFYPvsGCJw9pN8lmkz1q8R8UCqLnZdOd1JQkE3eTltx8BJ_RJ3FrxJuXmQ_mmxn4EXIZslnIWDS3mM-iMOXiiEzCJBEBlyI9_uNEnpIz57aM8TiTyYS0iwodmK-PzwqxpdiAx70efO2s3kF1gLIG2uhdudFdiQ3tXdlsaIV7P9tYbYCiwRo6O9ACLdV9hw3W2DvaNwbsXndg6Q7eynUF7pycFLpycPHbp-T1_u5l8RgsVw9Pi5tlsOZxKgIhChDSFDkvdMTiDLjQoTGJgYTnEOeMg-Qxg4xlLOSp9CiTONNQ5KB5kcdTcjXebS2-9-A6tcXeNv6lihhPOU9FJr11PVpri85ZKFRry1rbQYVMHQJVPlD1E6h356O7LysY_hfV8-p23PgGXRJ_Wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047447689</pqid></control><display><type>article</type><title>Closed‐loop one‐way‐travel‐time navigation using low‐grade odometry for autonomous underwater vehicles</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Claus, Brian ; Kepper, James H. ; Suman, Stefano ; Kinsey, James C.</creator><creatorcontrib>Claus, Brian ; Kepper, James H. ; Suman, Stefano ; Kinsey, James C.</creatorcontrib><description>This paper extends the progress of single beacon one‐way‐travel‐time (OWTT) range measurements for constraining XY position for autonomous underwater vehicles (AUV). Traditional navigation algorithms have used OWTT measurements to constrain an inertial navigation system aided by a Doppler Velocity Log (DVL). These methodologies limit AUV applications to where DVL bottom‐lock is available as well as the necessity for expensive strap‐down sensors, such as the DVL. Thus, deep water, mid‐water column research has mostly been left untouched, and vehicles that need expensive strap‐down sensors restrict the possibility of using multiple AUVs to explore a certain area. This work presents a solution for accurate navigation and localization using a vehicle's odometry determined by its dynamic model velocity and constrained by OWTT range measurements from a topside source beacon as well as other AUVs operating in proximity. We present a comparison of two navigation algorithms: an Extended Kalman Filter (EKF) and a Particle Filter(PF). Both of these algorithms also incorporate a water velocity bias estimator that further enhances the navigation accuracy and localization. Closed‐loop online field results on local waters as well as a real‐time implementation of two days field trials operating in Monterey Bay, California during the Keck Institute for Space Studies oceanographic research project prove the accuracy of this methodology with a root mean square error on the order of tens of meters compared to GPS position over a distance traveled of multiple kilometers.</description><identifier>ISSN: 1556-4959</identifier><identifier>EISSN: 1556-4967</identifier><identifier>DOI: 10.1002/rob.21746</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>acoustic ; Algorithms ; Autonomous navigation ; Autonomous underwater vehicles ; Deep water ; Dynamic models ; Extended Kalman filter ; Global positioning systems ; GPS ; Inertial navigation ; Localization ; low grade odometry ; Measuring instruments ; Navigation ; Navigation systems ; Odometers ; one way travel time ; Position measurement ; Rangefinding ; Satellite navigation systems ; Sensors ; Underwater vehicles ; Vehicles ; Velocity ; Water column ; Water purification</subject><ispartof>Journal of field robotics, 2018-06, Vol.35 (4), p.421-434</ispartof><rights>2017 The Authors. published by Wiley Periodicals, Inc.</rights><rights>Copyright © 2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4376-66fe69dfb4fa2038e46a1dd5de54be3b04e9430e8080147930e9538aefbea4fb3</citedby><cites>FETCH-LOGICAL-c4376-66fe69dfb4fa2038e46a1dd5de54be3b04e9430e8080147930e9538aefbea4fb3</cites><orcidid>0000-0003-2335-6053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frob.21746$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frob.21746$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Claus, Brian</creatorcontrib><creatorcontrib>Kepper, James H.</creatorcontrib><creatorcontrib>Suman, Stefano</creatorcontrib><creatorcontrib>Kinsey, James C.</creatorcontrib><title>Closed‐loop one‐way‐travel‐time navigation using low‐grade odometry for autonomous underwater vehicles</title><title>Journal of field robotics</title><description>This paper extends the progress of single beacon one‐way‐travel‐time (OWTT) range measurements for constraining XY position for autonomous underwater vehicles (AUV). Traditional navigation algorithms have used OWTT measurements to constrain an inertial navigation system aided by a Doppler Velocity Log (DVL). These methodologies limit AUV applications to where DVL bottom‐lock is available as well as the necessity for expensive strap‐down sensors, such as the DVL. Thus, deep water, mid‐water column research has mostly been left untouched, and vehicles that need expensive strap‐down sensors restrict the possibility of using multiple AUVs to explore a certain area. This work presents a solution for accurate navigation and localization using a vehicle's odometry determined by its dynamic model velocity and constrained by OWTT range measurements from a topside source beacon as well as other AUVs operating in proximity. We present a comparison of two navigation algorithms: an Extended Kalman Filter (EKF) and a Particle Filter(PF). Both of these algorithms also incorporate a water velocity bias estimator that further enhances the navigation accuracy and localization. Closed‐loop online field results on local waters as well as a real‐time implementation of two days field trials operating in Monterey Bay, California during the Keck Institute for Space Studies oceanographic research project prove the accuracy of this methodology with a root mean square error on the order of tens of meters compared to GPS position over a distance traveled of multiple kilometers.</description><subject>acoustic</subject><subject>Algorithms</subject><subject>Autonomous navigation</subject><subject>Autonomous underwater vehicles</subject><subject>Deep water</subject><subject>Dynamic models</subject><subject>Extended Kalman filter</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Inertial navigation</subject><subject>Localization</subject><subject>low grade odometry</subject><subject>Measuring instruments</subject><subject>Navigation</subject><subject>Navigation systems</subject><subject>Odometers</subject><subject>one way travel time</subject><subject>Position measurement</subject><subject>Rangefinding</subject><subject>Satellite navigation systems</subject><subject>Sensors</subject><subject>Underwater vehicles</subject><subject>Vehicles</subject><subject>Velocity</subject><subject>Water column</subject><subject>Water purification</subject><issn>1556-4959</issn><issn>1556-4967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kM9Kw0AQhxdRsFYPvsGCJw9pN8lmkz1q8R8UCqLnZdOd1JQkE3eTltx8BJ_RJ3FrxJuXmQ_mmxn4EXIZslnIWDS3mM-iMOXiiEzCJBEBlyI9_uNEnpIz57aM8TiTyYS0iwodmK-PzwqxpdiAx70efO2s3kF1gLIG2uhdudFdiQ3tXdlsaIV7P9tYbYCiwRo6O9ACLdV9hw3W2DvaNwbsXndg6Q7eynUF7pycFLpycPHbp-T1_u5l8RgsVw9Pi5tlsOZxKgIhChDSFDkvdMTiDLjQoTGJgYTnEOeMg-Qxg4xlLOSp9CiTONNQ5KB5kcdTcjXebS2-9-A6tcXeNv6lihhPOU9FJr11PVpri85ZKFRry1rbQYVMHQJVPlD1E6h356O7LysY_hfV8-p23PgGXRJ_Wg</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Claus, Brian</creator><creator>Kepper, James H.</creator><creator>Suman, Stefano</creator><creator>Kinsey, James C.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2335-6053</orcidid></search><sort><creationdate>201806</creationdate><title>Closed‐loop one‐way‐travel‐time navigation using low‐grade odometry for autonomous underwater vehicles</title><author>Claus, Brian ; Kepper, James H. ; Suman, Stefano ; Kinsey, James C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4376-66fe69dfb4fa2038e46a1dd5de54be3b04e9430e8080147930e9538aefbea4fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acoustic</topic><topic>Algorithms</topic><topic>Autonomous navigation</topic><topic>Autonomous underwater vehicles</topic><topic>Deep water</topic><topic>Dynamic models</topic><topic>Extended Kalman filter</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Inertial navigation</topic><topic>Localization</topic><topic>low grade odometry</topic><topic>Measuring instruments</topic><topic>Navigation</topic><topic>Navigation systems</topic><topic>Odometers</topic><topic>one way travel time</topic><topic>Position measurement</topic><topic>Rangefinding</topic><topic>Satellite navigation systems</topic><topic>Sensors</topic><topic>Underwater vehicles</topic><topic>Vehicles</topic><topic>Velocity</topic><topic>Water column</topic><topic>Water purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Claus, Brian</creatorcontrib><creatorcontrib>Kepper, James H.</creatorcontrib><creatorcontrib>Suman, Stefano</creatorcontrib><creatorcontrib>Kinsey, James C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of field robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Claus, Brian</au><au>Kepper, James H.</au><au>Suman, Stefano</au><au>Kinsey, James C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed‐loop one‐way‐travel‐time navigation using low‐grade odometry for autonomous underwater vehicles</atitle><jtitle>Journal of field robotics</jtitle><date>2018-06</date><risdate>2018</risdate><volume>35</volume><issue>4</issue><spage>421</spage><epage>434</epage><pages>421-434</pages><issn>1556-4959</issn><eissn>1556-4967</eissn><abstract>This paper extends the progress of single beacon one‐way‐travel‐time (OWTT) range measurements for constraining XY position for autonomous underwater vehicles (AUV). Traditional navigation algorithms have used OWTT measurements to constrain an inertial navigation system aided by a Doppler Velocity Log (DVL). These methodologies limit AUV applications to where DVL bottom‐lock is available as well as the necessity for expensive strap‐down sensors, such as the DVL. Thus, deep water, mid‐water column research has mostly been left untouched, and vehicles that need expensive strap‐down sensors restrict the possibility of using multiple AUVs to explore a certain area. This work presents a solution for accurate navigation and localization using a vehicle's odometry determined by its dynamic model velocity and constrained by OWTT range measurements from a topside source beacon as well as other AUVs operating in proximity. We present a comparison of two navigation algorithms: an Extended Kalman Filter (EKF) and a Particle Filter(PF). Both of these algorithms also incorporate a water velocity bias estimator that further enhances the navigation accuracy and localization. Closed‐loop online field results on local waters as well as a real‐time implementation of two days field trials operating in Monterey Bay, California during the Keck Institute for Space Studies oceanographic research project prove the accuracy of this methodology with a root mean square error on the order of tens of meters compared to GPS position over a distance traveled of multiple kilometers.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rob.21746</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2335-6053</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1556-4959
ispartof Journal of field robotics, 2018-06, Vol.35 (4), p.421-434
issn 1556-4959
1556-4967
language eng
recordid cdi_proquest_journals_2047447689
source Wiley Online Library Journals Frontfile Complete
subjects acoustic
Algorithms
Autonomous navigation
Autonomous underwater vehicles
Deep water
Dynamic models
Extended Kalman filter
Global positioning systems
GPS
Inertial navigation
Localization
low grade odometry
Measuring instruments
Navigation
Navigation systems
Odometers
one way travel time
Position measurement
Rangefinding
Satellite navigation systems
Sensors
Underwater vehicles
Vehicles
Velocity
Water column
Water purification
title Closed‐loop one‐way‐travel‐time navigation using low‐grade odometry for autonomous underwater vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed%E2%80%90loop%20one%E2%80%90way%E2%80%90travel%E2%80%90time%20navigation%20using%20low%E2%80%90grade%20odometry%20for%20autonomous%20underwater%20vehicles&rft.jtitle=Journal%20of%20field%20robotics&rft.au=Claus,%20Brian&rft.date=2018-06&rft.volume=35&rft.issue=4&rft.spage=421&rft.epage=434&rft.pages=421-434&rft.issn=1556-4959&rft.eissn=1556-4967&rft_id=info:doi/10.1002/rob.21746&rft_dat=%3Cproquest_cross%3E2047447689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047447689&rft_id=info:pmid/&rfr_iscdi=true