37‐1: Invited Paper: 3D Computer Vision Based on Machine Learning with Deep Neural Networks

Recent advances in the field of computer vision can be attributed to the emergence of deep learning techniques, in particular convolutional neural networks. Neural networks, partially inspired by the brain’s visual cortex, enable a computer to “learn” the most important features of the images it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SID International Symposium Digest of technical papers 2018-05, Vol.49 (1), p.463-466
Hauptverfasser: Vodrahalli, Kailas, Bhowmik, Achintya K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 466
container_issue 1
container_start_page 463
container_title SID International Symposium Digest of technical papers
container_volume 49
creator Vodrahalli, Kailas
Bhowmik, Achintya K.
description Recent advances in the field of computer vision can be attributed to the emergence of deep learning techniques, in particular convolutional neural networks. Neural networks, partially inspired by the brain’s visual cortex, enable a computer to “learn” the most important features of the images it is shown in relation to a specific, specified task. Given sufficient data and time, (deep) convolutional neural networks offer more easily designed, more generalizable, and significantly more accurate end‐to‐end systems than is possible with previously employed computer vision techniques. This review paper seeks to provide an overview of deep learning in the field of computer vision with an emphasis on recent progress in tasks involving 3D visual data. Through a backdrop of the mammalian visual processing system, we also hope to provide inspiration for future advances in automated visual processing.
doi_str_mv 10.1002/sdtp.12601
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047444935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047444935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1461-58dd27a9001a19cf039a40c4d7e6199ac77bd27070984a7228d951765f5d61973</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqWw4QSW2CGlzCROHHcHLT-VClSiIDbIMolDXUoS7ISqO47AGTkJLmXN6htp3sxoHiGHCD0ECE9c3tQ9DBPALdIJMUkDwFhskw6A4IFIksddsufcHCCKGBMd8hTx788v7NNR-WEandOJqrXt02hIB9Vb3Tba0gfjTFXSM-V83xfXKpuZUtOxVrY05QtdmmZGh1rX9Ea3Vi18NMvKvrp9slOohdMHf9kl9xfn08FVML69HA1Ox0GGLMEgTvM85EoAoEKRFRAJxSBjOdcJCqEyzp89ABxEyhQPwzQXMfIkLuLcAzzqkqPN3tpW7612jZxXrS39SRkC48y_GsWeOt5Qma2cs7qQtTVvyq4kglzrk2t98lefh3EDL81Cr_4h5d1wOtnM_ADhGHB6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047444935</pqid></control><display><type>article</type><title>37‐1: Invited Paper: 3D Computer Vision Based on Machine Learning with Deep Neural Networks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vodrahalli, Kailas ; Bhowmik, Achintya K.</creator><creatorcontrib>Vodrahalli, Kailas ; Bhowmik, Achintya K.</creatorcontrib><description>Recent advances in the field of computer vision can be attributed to the emergence of deep learning techniques, in particular convolutional neural networks. Neural networks, partially inspired by the brain’s visual cortex, enable a computer to “learn” the most important features of the images it is shown in relation to a specific, specified task. Given sufficient data and time, (deep) convolutional neural networks offer more easily designed, more generalizable, and significantly more accurate end‐to‐end systems than is possible with previously employed computer vision techniques. This review paper seeks to provide an overview of deep learning in the field of computer vision with an emphasis on recent progress in tasks involving 3D visual data. Through a backdrop of the mammalian visual processing system, we also hope to provide inspiration for future advances in automated visual processing.</description><identifier>ISSN: 0097-966X</identifier><identifier>EISSN: 2168-0159</identifier><identifier>DOI: 10.1002/sdtp.12601</identifier><language>eng</language><publisher>Campbell: Wiley Subscription Services, Inc</publisher><subject>artificial intelligence ; Artificial neural networks ; Brain ; Computer vision ; deep neural networks ; Machine learning ; Neural networks ; Visual task performance ; Visual tasks</subject><ispartof>SID International Symposium Digest of technical papers, 2018-05, Vol.49 (1), p.463-466</ispartof><rights>2018 The Society for Information Display</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1461-58dd27a9001a19cf039a40c4d7e6199ac77bd27070984a7228d951765f5d61973</citedby><cites>FETCH-LOGICAL-c1461-58dd27a9001a19cf039a40c4d7e6199ac77bd27070984a7228d951765f5d61973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsdtp.12601$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsdtp.12601$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Vodrahalli, Kailas</creatorcontrib><creatorcontrib>Bhowmik, Achintya K.</creatorcontrib><title>37‐1: Invited Paper: 3D Computer Vision Based on Machine Learning with Deep Neural Networks</title><title>SID International Symposium Digest of technical papers</title><description>Recent advances in the field of computer vision can be attributed to the emergence of deep learning techniques, in particular convolutional neural networks. Neural networks, partially inspired by the brain’s visual cortex, enable a computer to “learn” the most important features of the images it is shown in relation to a specific, specified task. Given sufficient data and time, (deep) convolutional neural networks offer more easily designed, more generalizable, and significantly more accurate end‐to‐end systems than is possible with previously employed computer vision techniques. This review paper seeks to provide an overview of deep learning in the field of computer vision with an emphasis on recent progress in tasks involving 3D visual data. Through a backdrop of the mammalian visual processing system, we also hope to provide inspiration for future advances in automated visual processing.</description><subject>artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Computer vision</subject><subject>deep neural networks</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Visual task performance</subject><subject>Visual tasks</subject><issn>0097-966X</issn><issn>2168-0159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqWw4QSW2CGlzCROHHcHLT-VClSiIDbIMolDXUoS7ISqO47AGTkJLmXN6htp3sxoHiGHCD0ECE9c3tQ9DBPALdIJMUkDwFhskw6A4IFIksddsufcHCCKGBMd8hTx788v7NNR-WEandOJqrXt02hIB9Vb3Tba0gfjTFXSM-V83xfXKpuZUtOxVrY05QtdmmZGh1rX9Ea3Vi18NMvKvrp9slOohdMHf9kl9xfn08FVML69HA1Ox0GGLMEgTvM85EoAoEKRFRAJxSBjOdcJCqEyzp89ABxEyhQPwzQXMfIkLuLcAzzqkqPN3tpW7612jZxXrS39SRkC48y_GsWeOt5Qma2cs7qQtTVvyq4kglzrk2t98lefh3EDL81Cr_4h5d1wOtnM_ADhGHB6</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Vodrahalli, Kailas</creator><creator>Bhowmik, Achintya K.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201805</creationdate><title>37‐1: Invited Paper: 3D Computer Vision Based on Machine Learning with Deep Neural Networks</title><author>Vodrahalli, Kailas ; Bhowmik, Achintya K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1461-58dd27a9001a19cf039a40c4d7e6199ac77bd27070984a7228d951765f5d61973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Computer vision</topic><topic>deep neural networks</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Visual task performance</topic><topic>Visual tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vodrahalli, Kailas</creatorcontrib><creatorcontrib>Bhowmik, Achintya K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SID International Symposium Digest of technical papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vodrahalli, Kailas</au><au>Bhowmik, Achintya K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>37‐1: Invited Paper: 3D Computer Vision Based on Machine Learning with Deep Neural Networks</atitle><jtitle>SID International Symposium Digest of technical papers</jtitle><date>2018-05</date><risdate>2018</risdate><volume>49</volume><issue>1</issue><spage>463</spage><epage>466</epage><pages>463-466</pages><issn>0097-966X</issn><eissn>2168-0159</eissn><abstract>Recent advances in the field of computer vision can be attributed to the emergence of deep learning techniques, in particular convolutional neural networks. Neural networks, partially inspired by the brain’s visual cortex, enable a computer to “learn” the most important features of the images it is shown in relation to a specific, specified task. Given sufficient data and time, (deep) convolutional neural networks offer more easily designed, more generalizable, and significantly more accurate end‐to‐end systems than is possible with previously employed computer vision techniques. This review paper seeks to provide an overview of deep learning in the field of computer vision with an emphasis on recent progress in tasks involving 3D visual data. Through a backdrop of the mammalian visual processing system, we also hope to provide inspiration for future advances in automated visual processing.</abstract><cop>Campbell</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/sdtp.12601</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-966X
ispartof SID International Symposium Digest of technical papers, 2018-05, Vol.49 (1), p.463-466
issn 0097-966X
2168-0159
language eng
recordid cdi_proquest_journals_2047444935
source Wiley Online Library Journals Frontfile Complete
subjects artificial intelligence
Artificial neural networks
Brain
Computer vision
deep neural networks
Machine learning
Neural networks
Visual task performance
Visual tasks
title 37‐1: Invited Paper: 3D Computer Vision Based on Machine Learning with Deep Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=37%E2%80%901:%20Invited%20Paper:%203D%20Computer%20Vision%20Based%20on%20Machine%20Learning%20with%20Deep%20Neural%20Networks&rft.jtitle=SID%20International%20Symposium%20Digest%20of%20technical%20papers&rft.au=Vodrahalli,%20Kailas&rft.date=2018-05&rft.volume=49&rft.issue=1&rft.spage=463&rft.epage=466&rft.pages=463-466&rft.issn=0097-966X&rft.eissn=2168-0159&rft_id=info:doi/10.1002/sdtp.12601&rft_dat=%3Cproquest_cross%3E2047444935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047444935&rft_id=info:pmid/&rfr_iscdi=true