37‐1: Invited Paper: 3D Computer Vision Based on Machine Learning with Deep Neural Networks
Recent advances in the field of computer vision can be attributed to the emergence of deep learning techniques, in particular convolutional neural networks. Neural networks, partially inspired by the brain’s visual cortex, enable a computer to “learn” the most important features of the images it is...
Gespeichert in:
Veröffentlicht in: | SID International Symposium Digest of technical papers 2018-05, Vol.49 (1), p.463-466 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 466 |
---|---|
container_issue | 1 |
container_start_page | 463 |
container_title | SID International Symposium Digest of technical papers |
container_volume | 49 |
creator | Vodrahalli, Kailas Bhowmik, Achintya K. |
description | Recent advances in the field of computer vision can be attributed to the emergence of deep learning techniques, in particular convolutional neural networks. Neural networks, partially inspired by the brain’s visual cortex, enable a computer to “learn” the most important features of the images it is shown in relation to a specific, specified task. Given sufficient data and time, (deep) convolutional neural networks offer more easily designed, more generalizable, and significantly more accurate end‐to‐end systems than is possible with previously employed computer vision techniques. This review paper seeks to provide an overview of deep learning in the field of computer vision with an emphasis on recent progress in tasks involving 3D visual data. Through a backdrop of the mammalian visual processing system, we also hope to provide inspiration for future advances in automated visual processing. |
doi_str_mv | 10.1002/sdtp.12601 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047444935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047444935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1461-58dd27a9001a19cf039a40c4d7e6199ac77bd27070984a7228d951765f5d61973</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqWw4QSW2CGlzCROHHcHLT-VClSiIDbIMolDXUoS7ISqO47AGTkJLmXN6htp3sxoHiGHCD0ECE9c3tQ9DBPALdIJMUkDwFhskw6A4IFIksddsufcHCCKGBMd8hTx788v7NNR-WEandOJqrXt02hIB9Vb3Tba0gfjTFXSM-V83xfXKpuZUtOxVrY05QtdmmZGh1rX9Ea3Vi18NMvKvrp9slOohdMHf9kl9xfn08FVML69HA1Ox0GGLMEgTvM85EoAoEKRFRAJxSBjOdcJCqEyzp89ABxEyhQPwzQXMfIkLuLcAzzqkqPN3tpW7612jZxXrS39SRkC48y_GsWeOt5Qma2cs7qQtTVvyq4kglzrk2t98lefh3EDL81Cr_4h5d1wOtnM_ADhGHB6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047444935</pqid></control><display><type>article</type><title>37‐1: Invited Paper: 3D Computer Vision Based on Machine Learning with Deep Neural Networks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vodrahalli, Kailas ; Bhowmik, Achintya K.</creator><creatorcontrib>Vodrahalli, Kailas ; Bhowmik, Achintya K.</creatorcontrib><description>Recent advances in the field of computer vision can be attributed to the emergence of deep learning techniques, in particular convolutional neural networks. Neural networks, partially inspired by the brain’s visual cortex, enable a computer to “learn” the most important features of the images it is shown in relation to a specific, specified task. Given sufficient data and time, (deep) convolutional neural networks offer more easily designed, more generalizable, and significantly more accurate end‐to‐end systems than is possible with previously employed computer vision techniques. This review paper seeks to provide an overview of deep learning in the field of computer vision with an emphasis on recent progress in tasks involving 3D visual data. Through a backdrop of the mammalian visual processing system, we also hope to provide inspiration for future advances in automated visual processing.</description><identifier>ISSN: 0097-966X</identifier><identifier>EISSN: 2168-0159</identifier><identifier>DOI: 10.1002/sdtp.12601</identifier><language>eng</language><publisher>Campbell: Wiley Subscription Services, Inc</publisher><subject>artificial intelligence ; Artificial neural networks ; Brain ; Computer vision ; deep neural networks ; Machine learning ; Neural networks ; Visual task performance ; Visual tasks</subject><ispartof>SID International Symposium Digest of technical papers, 2018-05, Vol.49 (1), p.463-466</ispartof><rights>2018 The Society for Information Display</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1461-58dd27a9001a19cf039a40c4d7e6199ac77bd27070984a7228d951765f5d61973</citedby><cites>FETCH-LOGICAL-c1461-58dd27a9001a19cf039a40c4d7e6199ac77bd27070984a7228d951765f5d61973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsdtp.12601$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsdtp.12601$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Vodrahalli, Kailas</creatorcontrib><creatorcontrib>Bhowmik, Achintya K.</creatorcontrib><title>37‐1: Invited Paper: 3D Computer Vision Based on Machine Learning with Deep Neural Networks</title><title>SID International Symposium Digest of technical papers</title><description>Recent advances in the field of computer vision can be attributed to the emergence of deep learning techniques, in particular convolutional neural networks. Neural networks, partially inspired by the brain’s visual cortex, enable a computer to “learn” the most important features of the images it is shown in relation to a specific, specified task. Given sufficient data and time, (deep) convolutional neural networks offer more easily designed, more generalizable, and significantly more accurate end‐to‐end systems than is possible with previously employed computer vision techniques. This review paper seeks to provide an overview of deep learning in the field of computer vision with an emphasis on recent progress in tasks involving 3D visual data. Through a backdrop of the mammalian visual processing system, we also hope to provide inspiration for future advances in automated visual processing.</description><subject>artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Computer vision</subject><subject>deep neural networks</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Visual task performance</subject><subject>Visual tasks</subject><issn>0097-966X</issn><issn>2168-0159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqWw4QSW2CGlzCROHHcHLT-VClSiIDbIMolDXUoS7ISqO47AGTkJLmXN6htp3sxoHiGHCD0ECE9c3tQ9DBPALdIJMUkDwFhskw6A4IFIksddsufcHCCKGBMd8hTx788v7NNR-WEandOJqrXt02hIB9Vb3Tba0gfjTFXSM-V83xfXKpuZUtOxVrY05QtdmmZGh1rX9Ea3Vi18NMvKvrp9slOohdMHf9kl9xfn08FVML69HA1Ox0GGLMEgTvM85EoAoEKRFRAJxSBjOdcJCqEyzp89ABxEyhQPwzQXMfIkLuLcAzzqkqPN3tpW7612jZxXrS39SRkC48y_GsWeOt5Qma2cs7qQtTVvyq4kglzrk2t98lefh3EDL81Cr_4h5d1wOtnM_ADhGHB6</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Vodrahalli, Kailas</creator><creator>Bhowmik, Achintya K.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201805</creationdate><title>37‐1: Invited Paper: 3D Computer Vision Based on Machine Learning with Deep Neural Networks</title><author>Vodrahalli, Kailas ; Bhowmik, Achintya K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1461-58dd27a9001a19cf039a40c4d7e6199ac77bd27070984a7228d951765f5d61973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Computer vision</topic><topic>deep neural networks</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Visual task performance</topic><topic>Visual tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vodrahalli, Kailas</creatorcontrib><creatorcontrib>Bhowmik, Achintya K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SID International Symposium Digest of technical papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vodrahalli, Kailas</au><au>Bhowmik, Achintya K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>37‐1: Invited Paper: 3D Computer Vision Based on Machine Learning with Deep Neural Networks</atitle><jtitle>SID International Symposium Digest of technical papers</jtitle><date>2018-05</date><risdate>2018</risdate><volume>49</volume><issue>1</issue><spage>463</spage><epage>466</epage><pages>463-466</pages><issn>0097-966X</issn><eissn>2168-0159</eissn><abstract>Recent advances in the field of computer vision can be attributed to the emergence of deep learning techniques, in particular convolutional neural networks. Neural networks, partially inspired by the brain’s visual cortex, enable a computer to “learn” the most important features of the images it is shown in relation to a specific, specified task. Given sufficient data and time, (deep) convolutional neural networks offer more easily designed, more generalizable, and significantly more accurate end‐to‐end systems than is possible with previously employed computer vision techniques. This review paper seeks to provide an overview of deep learning in the field of computer vision with an emphasis on recent progress in tasks involving 3D visual data. Through a backdrop of the mammalian visual processing system, we also hope to provide inspiration for future advances in automated visual processing.</abstract><cop>Campbell</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/sdtp.12601</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-966X |
ispartof | SID International Symposium Digest of technical papers, 2018-05, Vol.49 (1), p.463-466 |
issn | 0097-966X 2168-0159 |
language | eng |
recordid | cdi_proquest_journals_2047444935 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | artificial intelligence Artificial neural networks Brain Computer vision deep neural networks Machine learning Neural networks Visual task performance Visual tasks |
title | 37‐1: Invited Paper: 3D Computer Vision Based on Machine Learning with Deep Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=37%E2%80%901:%20Invited%20Paper:%203D%20Computer%20Vision%20Based%20on%20Machine%20Learning%20with%20Deep%20Neural%20Networks&rft.jtitle=SID%20International%20Symposium%20Digest%20of%20technical%20papers&rft.au=Vodrahalli,%20Kailas&rft.date=2018-05&rft.volume=49&rft.issue=1&rft.spage=463&rft.epage=466&rft.pages=463-466&rft.issn=0097-966X&rft.eissn=2168-0159&rft_id=info:doi/10.1002/sdtp.12601&rft_dat=%3Cproquest_cross%3E2047444935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047444935&rft_id=info:pmid/&rfr_iscdi=true |