33‐1: Invited Paper: Exploring the Formation and Growth of Organic Semiconductors with mm‐Scale Grains

While record mobilities have been reported for organic semiconductors in their single crystal form, the bulk nature of such crystals prohibit their practical application in devices. Here, we discuss our efforts to realize pinhole free films of organic semiconductors with grains of up to 1 mm in exte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SID International Symposium Digest of technical papers 2018-05, Vol.49 (1), p.413-414
Hauptverfasser: Rand, Barry P., Fusella, Michael A., Shayegan, Komron, Dull, Jordan T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 414
container_issue 1
container_start_page 413
container_title SID International Symposium Digest of technical papers
container_volume 49
creator Rand, Barry P.
Fusella, Michael A.
Shayegan, Komron
Dull, Jordan T.
description While record mobilities have been reported for organic semiconductors in their single crystal form, the bulk nature of such crystals prohibit their practical application in devices. Here, we discuss our efforts to realize pinhole free films of organic semiconductors with grains of up to 1 mm in extent. One such material is rubrene, but we will also show our efforts on other materials applicable to organic light emitting diodes, such as the electron transport layer 2,2′,2″‐(1,3,5‐benzinetriyl)‐tris(1‐phenyl‐1‐H‐benzimidazole) (TPBi). For rubrene, we will show our efforts to understand crystal formation, epitaxy, and transistors. Homoepitaxial studies uncover evidence of point and line defect formation in these films, indicating that homoepitaxy is not at equilibrium or strain‐free. Point defects that are resolved as screw dislocations can be eliminated under closer‐to‐equilibrium conditions, whereas we are not able to eliminate the formation of line defects. We are, however, able to eliminate these line defects by growing on a bulk single crystal of rubrene, indicating that the line defects are a result strain built into the thin film template, indicating that, in general, organic crystalline thin films may not adopt the exact lattice of a bulk crystal. Transistors made out of these large‐grained films of rubrene display charge carrier mobility of up to 3.5 cm2 V−1s−1, very close to single crystal values, highlighting their potential for practical application.
doi_str_mv 10.1002/sdtp.12587
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047441905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047441905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1057-6c18a33210f492cfc67c05fee4a8ee31fb37db454287d314abdff0f2d71fa6ce3</originalsourceid><addsrcrecordid>eNp9kM1OAjEUhRujiYhufIIm7kwG-zfTGXYGAUlIIAETd5PSaaFkph3bQWTnI_iMPomDuHZ1F-c75yYfALcY9TBC5CEUTd3DJE75GegQnKQRwnF2DjoIZTzKkuT1ElyFsEWIUsayDthS-v35hftwYt9Nowo4F7XyfTj8qEvnjV3DZqPgyPlKNMZZKGwBx97tmw10Gs78Wlgj4UJVRjpb7GTjfIB708ZV1Q4vpChVWxDGhmtwoUUZ1M3f7YKX0XA5eI6ms_Fk8DiNJEYxjxKJU0EpwUizjEgtEy5RrJViIlWKYr2ivFixmJGUFxQzsSq0RpoUHGuRSEW74O60W3v3tlOhybdu5237MieIccZwhuKWuj9R0rsQvNJ57U0l_CHHKD-6zI8u81-XLYxP8N6U6vAPmS-elvNT5wcqdXla</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047441905</pqid></control><display><type>article</type><title>33‐1: Invited Paper: Exploring the Formation and Growth of Organic Semiconductors with mm‐Scale Grains</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Rand, Barry P. ; Fusella, Michael A. ; Shayegan, Komron ; Dull, Jordan T.</creator><creatorcontrib>Rand, Barry P. ; Fusella, Michael A. ; Shayegan, Komron ; Dull, Jordan T.</creatorcontrib><description>While record mobilities have been reported for organic semiconductors in their single crystal form, the bulk nature of such crystals prohibit their practical application in devices. Here, we discuss our efforts to realize pinhole free films of organic semiconductors with grains of up to 1 mm in extent. One such material is rubrene, but we will also show our efforts on other materials applicable to organic light emitting diodes, such as the electron transport layer 2,2′,2″‐(1,3,5‐benzinetriyl)‐tris(1‐phenyl‐1‐H‐benzimidazole) (TPBi). For rubrene, we will show our efforts to understand crystal formation, epitaxy, and transistors. Homoepitaxial studies uncover evidence of point and line defect formation in these films, indicating that homoepitaxy is not at equilibrium or strain‐free. Point defects that are resolved as screw dislocations can be eliminated under closer‐to‐equilibrium conditions, whereas we are not able to eliminate the formation of line defects. We are, however, able to eliminate these line defects by growing on a bulk single crystal of rubrene, indicating that the line defects are a result strain built into the thin film template, indicating that, in general, organic crystalline thin films may not adopt the exact lattice of a bulk crystal. Transistors made out of these large‐grained films of rubrene display charge carrier mobility of up to 3.5 cm2 V−1s−1, very close to single crystal values, highlighting their potential for practical application.</description><identifier>ISSN: 0097-966X</identifier><identifier>EISSN: 2168-0159</identifier><identifier>DOI: 10.1002/sdtp.12587</identifier><language>eng</language><publisher>Campbell: Wiley Subscription Services, Inc</publisher><subject>Carrier mobility ; Crystal defects ; Crystal dislocations ; Crystal lattices ; crystals ; Current carriers ; Electron transport ; Equilibrium conditions ; Grains ; Organic light emitting diodes ; organic semiconductor ; Organic semiconductors ; Point defects ; Screw dislocations ; Semiconductor devices ; Semiconductors ; Single crystals ; Thin films ; Transistors</subject><ispartof>SID International Symposium Digest of technical papers, 2018-05, Vol.49 (1), p.413-414</ispartof><rights>2018 The Society for Information Display</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1057-6c18a33210f492cfc67c05fee4a8ee31fb37db454287d314abdff0f2d71fa6ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsdtp.12587$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsdtp.12587$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Rand, Barry P.</creatorcontrib><creatorcontrib>Fusella, Michael A.</creatorcontrib><creatorcontrib>Shayegan, Komron</creatorcontrib><creatorcontrib>Dull, Jordan T.</creatorcontrib><title>33‐1: Invited Paper: Exploring the Formation and Growth of Organic Semiconductors with mm‐Scale Grains</title><title>SID International Symposium Digest of technical papers</title><description>While record mobilities have been reported for organic semiconductors in their single crystal form, the bulk nature of such crystals prohibit their practical application in devices. Here, we discuss our efforts to realize pinhole free films of organic semiconductors with grains of up to 1 mm in extent. One such material is rubrene, but we will also show our efforts on other materials applicable to organic light emitting diodes, such as the electron transport layer 2,2′,2″‐(1,3,5‐benzinetriyl)‐tris(1‐phenyl‐1‐H‐benzimidazole) (TPBi). For rubrene, we will show our efforts to understand crystal formation, epitaxy, and transistors. Homoepitaxial studies uncover evidence of point and line defect formation in these films, indicating that homoepitaxy is not at equilibrium or strain‐free. Point defects that are resolved as screw dislocations can be eliminated under closer‐to‐equilibrium conditions, whereas we are not able to eliminate the formation of line defects. We are, however, able to eliminate these line defects by growing on a bulk single crystal of rubrene, indicating that the line defects are a result strain built into the thin film template, indicating that, in general, organic crystalline thin films may not adopt the exact lattice of a bulk crystal. Transistors made out of these large‐grained films of rubrene display charge carrier mobility of up to 3.5 cm2 V−1s−1, very close to single crystal values, highlighting their potential for practical application.</description><subject>Carrier mobility</subject><subject>Crystal defects</subject><subject>Crystal dislocations</subject><subject>Crystal lattices</subject><subject>crystals</subject><subject>Current carriers</subject><subject>Electron transport</subject><subject>Equilibrium conditions</subject><subject>Grains</subject><subject>Organic light emitting diodes</subject><subject>organic semiconductor</subject><subject>Organic semiconductors</subject><subject>Point defects</subject><subject>Screw dislocations</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Single crystals</subject><subject>Thin films</subject><subject>Transistors</subject><issn>0097-966X</issn><issn>2168-0159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAjEUhRujiYhufIIm7kwG-zfTGXYGAUlIIAETd5PSaaFkph3bQWTnI_iMPomDuHZ1F-c75yYfALcY9TBC5CEUTd3DJE75GegQnKQRwnF2DjoIZTzKkuT1ElyFsEWIUsayDthS-v35hftwYt9Nowo4F7XyfTj8qEvnjV3DZqPgyPlKNMZZKGwBx97tmw10Gs78Wlgj4UJVRjpb7GTjfIB708ZV1Q4vpChVWxDGhmtwoUUZ1M3f7YKX0XA5eI6ms_Fk8DiNJEYxjxKJU0EpwUizjEgtEy5RrJViIlWKYr2ivFixmJGUFxQzsSq0RpoUHGuRSEW74O60W3v3tlOhybdu5237MieIccZwhuKWuj9R0rsQvNJ57U0l_CHHKD-6zI8u81-XLYxP8N6U6vAPmS-elvNT5wcqdXla</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Rand, Barry P.</creator><creator>Fusella, Michael A.</creator><creator>Shayegan, Komron</creator><creator>Dull, Jordan T.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201805</creationdate><title>33‐1: Invited Paper: Exploring the Formation and Growth of Organic Semiconductors with mm‐Scale Grains</title><author>Rand, Barry P. ; Fusella, Michael A. ; Shayegan, Komron ; Dull, Jordan T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1057-6c18a33210f492cfc67c05fee4a8ee31fb37db454287d314abdff0f2d71fa6ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carrier mobility</topic><topic>Crystal defects</topic><topic>Crystal dislocations</topic><topic>Crystal lattices</topic><topic>crystals</topic><topic>Current carriers</topic><topic>Electron transport</topic><topic>Equilibrium conditions</topic><topic>Grains</topic><topic>Organic light emitting diodes</topic><topic>organic semiconductor</topic><topic>Organic semiconductors</topic><topic>Point defects</topic><topic>Screw dislocations</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Single crystals</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rand, Barry P.</creatorcontrib><creatorcontrib>Fusella, Michael A.</creatorcontrib><creatorcontrib>Shayegan, Komron</creatorcontrib><creatorcontrib>Dull, Jordan T.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SID International Symposium Digest of technical papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rand, Barry P.</au><au>Fusella, Michael A.</au><au>Shayegan, Komron</au><au>Dull, Jordan T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>33‐1: Invited Paper: Exploring the Formation and Growth of Organic Semiconductors with mm‐Scale Grains</atitle><jtitle>SID International Symposium Digest of technical papers</jtitle><date>2018-05</date><risdate>2018</risdate><volume>49</volume><issue>1</issue><spage>413</spage><epage>414</epage><pages>413-414</pages><issn>0097-966X</issn><eissn>2168-0159</eissn><abstract>While record mobilities have been reported for organic semiconductors in their single crystal form, the bulk nature of such crystals prohibit their practical application in devices. Here, we discuss our efforts to realize pinhole free films of organic semiconductors with grains of up to 1 mm in extent. One such material is rubrene, but we will also show our efforts on other materials applicable to organic light emitting diodes, such as the electron transport layer 2,2′,2″‐(1,3,5‐benzinetriyl)‐tris(1‐phenyl‐1‐H‐benzimidazole) (TPBi). For rubrene, we will show our efforts to understand crystal formation, epitaxy, and transistors. Homoepitaxial studies uncover evidence of point and line defect formation in these films, indicating that homoepitaxy is not at equilibrium or strain‐free. Point defects that are resolved as screw dislocations can be eliminated under closer‐to‐equilibrium conditions, whereas we are not able to eliminate the formation of line defects. We are, however, able to eliminate these line defects by growing on a bulk single crystal of rubrene, indicating that the line defects are a result strain built into the thin film template, indicating that, in general, organic crystalline thin films may not adopt the exact lattice of a bulk crystal. Transistors made out of these large‐grained films of rubrene display charge carrier mobility of up to 3.5 cm2 V−1s−1, very close to single crystal values, highlighting their potential for practical application.</abstract><cop>Campbell</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/sdtp.12587</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-966X
ispartof SID International Symposium Digest of technical papers, 2018-05, Vol.49 (1), p.413-414
issn 0097-966X
2168-0159
language eng
recordid cdi_proquest_journals_2047441905
source Wiley Online Library - AutoHoldings Journals
subjects Carrier mobility
Crystal defects
Crystal dislocations
Crystal lattices
crystals
Current carriers
Electron transport
Equilibrium conditions
Grains
Organic light emitting diodes
organic semiconductor
Organic semiconductors
Point defects
Screw dislocations
Semiconductor devices
Semiconductors
Single crystals
Thin films
Transistors
title 33‐1: Invited Paper: Exploring the Formation and Growth of Organic Semiconductors with mm‐Scale Grains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=33%E2%80%901:%20Invited%20Paper:%20Exploring%20the%20Formation%20and%20Growth%20of%20Organic%20Semiconductors%20with%20mm%E2%80%90Scale%20Grains&rft.jtitle=SID%20International%20Symposium%20Digest%20of%20technical%20papers&rft.au=Rand,%20Barry%20P.&rft.date=2018-05&rft.volume=49&rft.issue=1&rft.spage=413&rft.epage=414&rft.pages=413-414&rft.issn=0097-966X&rft.eissn=2168-0159&rft_id=info:doi/10.1002/sdtp.12587&rft_dat=%3Cproquest_cross%3E2047441905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047441905&rft_id=info:pmid/&rfr_iscdi=true