Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed sabkha, Qatar): Roles of bacteria, extracellular polymeric substances and viruses

In a modern peritidal microbial mat from Qatar, both biomediated carbonates and Mg‐rich clay minerals (palygorskite) were identified. The mat, ca 5 cm thick, shows a clear lamination reflecting different microbial communities. The initial precipitates within the top millimetres of the mat are compos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sedimentology 2018-06, Vol.65 (4), p.1213-1245
Hauptverfasser: Perri, Edoardo, Tucker, Maurice E., Słowakiewicz, Mirosław, Whitaker, Fiona, Bowen, Leon, Perrotta, Ida D., Della Porta, Giovanna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1245
container_issue 4
container_start_page 1213
container_title Sedimentology
container_volume 65
creator Perri, Edoardo
Tucker, Maurice E.
Słowakiewicz, Mirosław
Whitaker, Fiona
Bowen, Leon
Perrotta, Ida D.
Della Porta, Giovanna
description In a modern peritidal microbial mat from Qatar, both biomediated carbonates and Mg‐rich clay minerals (palygorskite) were identified. The mat, ca 5 cm thick, shows a clear lamination reflecting different microbial communities. The initial precipitates within the top millimetres of the mat are composed of Ca–Mg–Si–Al–S amorphous nanoparticles (few tens of nanometres) that replace the ultrastructure of extracellular polymeric substances. The extracellular polymeric substances are enriched in the same cations and act as a substrate for mineral nucleation. Successively, crystallites of palygorskite fibres associated with carbonate nanocrystals develop, commonly surrounding bacterial bodies. Micron‐sized crystals of low‐Mg calcite are the most common precipitates, together with subordinate aragonite, very high‐Mg calcite/dolomite and ankerite. Pyrite nanocrystals and framboids are present in the deeper layers of the mat. Calcite crystallites form conical structures, circular to triangular/hexagonal in cross‐section, evolving to crystals with rhombohedral terminations; some crystallite bundles develop into dumb‐bell and stellate forms. Spheroidal organo‐mineral structures are also common within the mat. Nanospheres, a few tens of nanometres in diameter, occur attached to coccoid bacteria and within their cells; these are interpreted as permineralized viruses and could be significant as nuclei for crystallite‐crystal precipitation. Microspheres, 1 to 10 μm in diameter, result from intracellular permineralization within bacteria or the mineralization of the bacteria themselves. Carbonates and clay minerals are commonly aggregated to form peloids, tens of microns in size, surrounded by residual organic matter. Magnesium silicate and carbonate precipitation are likely to have been driven by pH – saturation index – redox changes within the mat, related to microenvironmental chemical changes induced by the microbes – extracellular polymeric substances – viruses and their degradation.
doi_str_mv 10.1111/sed.12419
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047436401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047436401</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4219-bf152688bf865aafd94fff19284e7e889f6c1b55d7ea0ed8ff75591273fa36273</originalsourceid><addsrcrecordid>eNp1kclOwzAQhi0EEqVw4A0scaESoXbibNxQWaUixHaOxslYGJy42AlQXocXxaVcmctoZr7Z9BOyz9kxDzb12BzzWPByg4x4kqVRwkq-SUaMJXnEcpFtkx3vXxjjmSjKEfmegZO2gx4pdA312uh6FUhtW92hA6O_oNe2o7qjQJ-XC3Q-JDukra6dlRoMbaGnhzfoQSOGGSBfn-GI3kEPbnJC761BT62iEuoenQ4l_Owd1GjMYMDRhTXLNhRq6gfpe-jqwK-ueddu8Oh3yZYC43Hvz4_J08X54-wqmt9eXs9O5xGImJeRVDyNs6KQqshSANWUQinFy7gQmGNRlCqruUzTJkdg2BRK5Wla8jhPFCRZcGNysJ67cPZtQN9XL3ZwXVhZxUzkIskE44GarKnwvfcOVbVwugW3rDirVhpUQYPqV4PATtfshza4_B-sHs7P1h0_YvCLjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047436401</pqid></control><display><type>article</type><title>Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed sabkha, Qatar): Roles of bacteria, extracellular polymeric substances and viruses</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Perri, Edoardo ; Tucker, Maurice E. ; Słowakiewicz, Mirosław ; Whitaker, Fiona ; Bowen, Leon ; Perrotta, Ida D. ; Della Porta, Giovanna</creator><creatorcontrib>Perri, Edoardo ; Tucker, Maurice E. ; Słowakiewicz, Mirosław ; Whitaker, Fiona ; Bowen, Leon ; Perrotta, Ida D. ; Della Porta, Giovanna</creatorcontrib><description>In a modern peritidal microbial mat from Qatar, both biomediated carbonates and Mg‐rich clay minerals (palygorskite) were identified. The mat, ca 5 cm thick, shows a clear lamination reflecting different microbial communities. The initial precipitates within the top millimetres of the mat are composed of Ca–Mg–Si–Al–S amorphous nanoparticles (few tens of nanometres) that replace the ultrastructure of extracellular polymeric substances. The extracellular polymeric substances are enriched in the same cations and act as a substrate for mineral nucleation. Successively, crystallites of palygorskite fibres associated with carbonate nanocrystals develop, commonly surrounding bacterial bodies. Micron‐sized crystals of low‐Mg calcite are the most common precipitates, together with subordinate aragonite, very high‐Mg calcite/dolomite and ankerite. Pyrite nanocrystals and framboids are present in the deeper layers of the mat. Calcite crystallites form conical structures, circular to triangular/hexagonal in cross‐section, evolving to crystals with rhombohedral terminations; some crystallite bundles develop into dumb‐bell and stellate forms. Spheroidal organo‐mineral structures are also common within the mat. Nanospheres, a few tens of nanometres in diameter, occur attached to coccoid bacteria and within their cells; these are interpreted as permineralized viruses and could be significant as nuclei for crystallite‐crystal precipitation. Microspheres, 1 to 10 μm in diameter, result from intracellular permineralization within bacteria or the mineralization of the bacteria themselves. Carbonates and clay minerals are commonly aggregated to form peloids, tens of microns in size, surrounded by residual organic matter. Magnesium silicate and carbonate precipitation are likely to have been driven by pH – saturation index – redox changes within the mat, related to microenvironmental chemical changes induced by the microbes – extracellular polymeric substances – viruses and their degradation.</description><identifier>ISSN: 0037-0746</identifier><identifier>EISSN: 1365-3091</identifier><identifier>DOI: 10.1111/sed.12419</identifier><language>eng</language><publisher>Madrid: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; Aragonite ; Bacteria ; Biodegradation ; biomediated carbonate ; biomediated clay ; Calcite ; Carbonates ; Cationic polymerization ; Cations ; Chemical precipitation ; Clay ; Clay minerals ; Crystallites ; Crystals ; Dolomite ; Dolostone ; Extracellular ; extracellular polymeric substances ; Fibers ; Laminates ; Lamination ; Magnesium ; Magnesium silicates ; Microbial activity ; microbial mat ; Microbial mats ; Microorganisms ; Microspheres ; Mineralization ; Minerals ; Nanocrystals ; Nanoparticles ; Nanospheres ; Nuclei ; Nucleus ; Organic matter ; Oxidoreductions ; Palygorskite ; Precipitates ; Pyrite ; Sabkhas ; Saturation index ; Silicates ; Silicon ; Substrates ; Ultrastructure ; Viruses</subject><ispartof>Sedimentology, 2018-06, Vol.65 (4), p.1213-1245</ispartof><rights>2017 The Authors. Sedimentology © 2017 International Association of Sedimentologists</rights><rights>Journal compilation © 2018 International Association of Sedimentologists</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4219-bf152688bf865aafd94fff19284e7e889f6c1b55d7ea0ed8ff75591273fa36273</citedby><cites>FETCH-LOGICAL-a4219-bf152688bf865aafd94fff19284e7e889f6c1b55d7ea0ed8ff75591273fa36273</cites><orcidid>0000-0001-9825-7098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsed.12419$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsed.12419$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Perri, Edoardo</creatorcontrib><creatorcontrib>Tucker, Maurice E.</creatorcontrib><creatorcontrib>Słowakiewicz, Mirosław</creatorcontrib><creatorcontrib>Whitaker, Fiona</creatorcontrib><creatorcontrib>Bowen, Leon</creatorcontrib><creatorcontrib>Perrotta, Ida D.</creatorcontrib><creatorcontrib>Della Porta, Giovanna</creatorcontrib><title>Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed sabkha, Qatar): Roles of bacteria, extracellular polymeric substances and viruses</title><title>Sedimentology</title><description>In a modern peritidal microbial mat from Qatar, both biomediated carbonates and Mg‐rich clay minerals (palygorskite) were identified. The mat, ca 5 cm thick, shows a clear lamination reflecting different microbial communities. The initial precipitates within the top millimetres of the mat are composed of Ca–Mg–Si–Al–S amorphous nanoparticles (few tens of nanometres) that replace the ultrastructure of extracellular polymeric substances. The extracellular polymeric substances are enriched in the same cations and act as a substrate for mineral nucleation. Successively, crystallites of palygorskite fibres associated with carbonate nanocrystals develop, commonly surrounding bacterial bodies. Micron‐sized crystals of low‐Mg calcite are the most common precipitates, together with subordinate aragonite, very high‐Mg calcite/dolomite and ankerite. Pyrite nanocrystals and framboids are present in the deeper layers of the mat. Calcite crystallites form conical structures, circular to triangular/hexagonal in cross‐section, evolving to crystals with rhombohedral terminations; some crystallite bundles develop into dumb‐bell and stellate forms. Spheroidal organo‐mineral structures are also common within the mat. Nanospheres, a few tens of nanometres in diameter, occur attached to coccoid bacteria and within their cells; these are interpreted as permineralized viruses and could be significant as nuclei for crystallite‐crystal precipitation. Microspheres, 1 to 10 μm in diameter, result from intracellular permineralization within bacteria or the mineralization of the bacteria themselves. Carbonates and clay minerals are commonly aggregated to form peloids, tens of microns in size, surrounded by residual organic matter. Magnesium silicate and carbonate precipitation are likely to have been driven by pH – saturation index – redox changes within the mat, related to microenvironmental chemical changes induced by the microbes – extracellular polymeric substances – viruses and their degradation.</description><subject>Aluminum</subject><subject>Aragonite</subject><subject>Bacteria</subject><subject>Biodegradation</subject><subject>biomediated carbonate</subject><subject>biomediated clay</subject><subject>Calcite</subject><subject>Carbonates</subject><subject>Cationic polymerization</subject><subject>Cations</subject><subject>Chemical precipitation</subject><subject>Clay</subject><subject>Clay minerals</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Dolomite</subject><subject>Dolostone</subject><subject>Extracellular</subject><subject>extracellular polymeric substances</subject><subject>Fibers</subject><subject>Laminates</subject><subject>Lamination</subject><subject>Magnesium</subject><subject>Magnesium silicates</subject><subject>Microbial activity</subject><subject>microbial mat</subject><subject>Microbial mats</subject><subject>Microorganisms</subject><subject>Microspheres</subject><subject>Mineralization</subject><subject>Minerals</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><subject>Nuclei</subject><subject>Nucleus</subject><subject>Organic matter</subject><subject>Oxidoreductions</subject><subject>Palygorskite</subject><subject>Precipitates</subject><subject>Pyrite</subject><subject>Sabkhas</subject><subject>Saturation index</subject><subject>Silicates</subject><subject>Silicon</subject><subject>Substrates</subject><subject>Ultrastructure</subject><subject>Viruses</subject><issn>0037-0746</issn><issn>1365-3091</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kclOwzAQhi0EEqVw4A0scaESoXbibNxQWaUixHaOxslYGJy42AlQXocXxaVcmctoZr7Z9BOyz9kxDzb12BzzWPByg4x4kqVRwkq-SUaMJXnEcpFtkx3vXxjjmSjKEfmegZO2gx4pdA312uh6FUhtW92hA6O_oNe2o7qjQJ-XC3Q-JDukra6dlRoMbaGnhzfoQSOGGSBfn-GI3kEPbnJC761BT62iEuoenQ4l_Owd1GjMYMDRhTXLNhRq6gfpe-jqwK-ueddu8Oh3yZYC43Hvz4_J08X54-wqmt9eXs9O5xGImJeRVDyNs6KQqshSANWUQinFy7gQmGNRlCqruUzTJkdg2BRK5Wla8jhPFCRZcGNysJ67cPZtQN9XL3ZwXVhZxUzkIskE44GarKnwvfcOVbVwugW3rDirVhpUQYPqV4PATtfshza4_B-sHs7P1h0_YvCLjQ</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Perri, Edoardo</creator><creator>Tucker, Maurice E.</creator><creator>Słowakiewicz, Mirosław</creator><creator>Whitaker, Fiona</creator><creator>Bowen, Leon</creator><creator>Perrotta, Ida D.</creator><creator>Della Porta, Giovanna</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9825-7098</orcidid></search><sort><creationdate>201806</creationdate><title>Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed sabkha, Qatar): Roles of bacteria, extracellular polymeric substances and viruses</title><author>Perri, Edoardo ; Tucker, Maurice E. ; Słowakiewicz, Mirosław ; Whitaker, Fiona ; Bowen, Leon ; Perrotta, Ida D. ; Della Porta, Giovanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4219-bf152688bf865aafd94fff19284e7e889f6c1b55d7ea0ed8ff75591273fa36273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Aragonite</topic><topic>Bacteria</topic><topic>Biodegradation</topic><topic>biomediated carbonate</topic><topic>biomediated clay</topic><topic>Calcite</topic><topic>Carbonates</topic><topic>Cationic polymerization</topic><topic>Cations</topic><topic>Chemical precipitation</topic><topic>Clay</topic><topic>Clay minerals</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Dolomite</topic><topic>Dolostone</topic><topic>Extracellular</topic><topic>extracellular polymeric substances</topic><topic>Fibers</topic><topic>Laminates</topic><topic>Lamination</topic><topic>Magnesium</topic><topic>Magnesium silicates</topic><topic>Microbial activity</topic><topic>microbial mat</topic><topic>Microbial mats</topic><topic>Microorganisms</topic><topic>Microspheres</topic><topic>Mineralization</topic><topic>Minerals</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><topic>Nuclei</topic><topic>Nucleus</topic><topic>Organic matter</topic><topic>Oxidoreductions</topic><topic>Palygorskite</topic><topic>Precipitates</topic><topic>Pyrite</topic><topic>Sabkhas</topic><topic>Saturation index</topic><topic>Silicates</topic><topic>Silicon</topic><topic>Substrates</topic><topic>Ultrastructure</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perri, Edoardo</creatorcontrib><creatorcontrib>Tucker, Maurice E.</creatorcontrib><creatorcontrib>Słowakiewicz, Mirosław</creatorcontrib><creatorcontrib>Whitaker, Fiona</creatorcontrib><creatorcontrib>Bowen, Leon</creatorcontrib><creatorcontrib>Perrotta, Ida D.</creatorcontrib><creatorcontrib>Della Porta, Giovanna</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Sedimentology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perri, Edoardo</au><au>Tucker, Maurice E.</au><au>Słowakiewicz, Mirosław</au><au>Whitaker, Fiona</au><au>Bowen, Leon</au><au>Perrotta, Ida D.</au><au>Della Porta, Giovanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed sabkha, Qatar): Roles of bacteria, extracellular polymeric substances and viruses</atitle><jtitle>Sedimentology</jtitle><date>2018-06</date><risdate>2018</risdate><volume>65</volume><issue>4</issue><spage>1213</spage><epage>1245</epage><pages>1213-1245</pages><issn>0037-0746</issn><eissn>1365-3091</eissn><abstract>In a modern peritidal microbial mat from Qatar, both biomediated carbonates and Mg‐rich clay minerals (palygorskite) were identified. The mat, ca 5 cm thick, shows a clear lamination reflecting different microbial communities. The initial precipitates within the top millimetres of the mat are composed of Ca–Mg–Si–Al–S amorphous nanoparticles (few tens of nanometres) that replace the ultrastructure of extracellular polymeric substances. The extracellular polymeric substances are enriched in the same cations and act as a substrate for mineral nucleation. Successively, crystallites of palygorskite fibres associated with carbonate nanocrystals develop, commonly surrounding bacterial bodies. Micron‐sized crystals of low‐Mg calcite are the most common precipitates, together with subordinate aragonite, very high‐Mg calcite/dolomite and ankerite. Pyrite nanocrystals and framboids are present in the deeper layers of the mat. Calcite crystallites form conical structures, circular to triangular/hexagonal in cross‐section, evolving to crystals with rhombohedral terminations; some crystallite bundles develop into dumb‐bell and stellate forms. Spheroidal organo‐mineral structures are also common within the mat. Nanospheres, a few tens of nanometres in diameter, occur attached to coccoid bacteria and within their cells; these are interpreted as permineralized viruses and could be significant as nuclei for crystallite‐crystal precipitation. Microspheres, 1 to 10 μm in diameter, result from intracellular permineralization within bacteria or the mineralization of the bacteria themselves. Carbonates and clay minerals are commonly aggregated to form peloids, tens of microns in size, surrounded by residual organic matter. Magnesium silicate and carbonate precipitation are likely to have been driven by pH – saturation index – redox changes within the mat, related to microenvironmental chemical changes induced by the microbes – extracellular polymeric substances – viruses and their degradation.</abstract><cop>Madrid</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/sed.12419</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-9825-7098</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0037-0746
ispartof Sedimentology, 2018-06, Vol.65 (4), p.1213-1245
issn 0037-0746
1365-3091
language eng
recordid cdi_proquest_journals_2047436401
source Wiley Online Library Journals Frontfile Complete
subjects Aluminum
Aragonite
Bacteria
Biodegradation
biomediated carbonate
biomediated clay
Calcite
Carbonates
Cationic polymerization
Cations
Chemical precipitation
Clay
Clay minerals
Crystallites
Crystals
Dolomite
Dolostone
Extracellular
extracellular polymeric substances
Fibers
Laminates
Lamination
Magnesium
Magnesium silicates
Microbial activity
microbial mat
Microbial mats
Microorganisms
Microspheres
Mineralization
Minerals
Nanocrystals
Nanoparticles
Nanospheres
Nuclei
Nucleus
Organic matter
Oxidoreductions
Palygorskite
Precipitates
Pyrite
Sabkhas
Saturation index
Silicates
Silicon
Substrates
Ultrastructure
Viruses
title Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed sabkha, Qatar): Roles of bacteria, extracellular polymeric substances and viruses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A08%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbonate%20and%20silicate%20biomineralization%20in%20a%20hypersaline%20microbial%20mat%20(Mesaieed%20sabkha,%20Qatar):%20Roles%20of%20bacteria,%20extracellular%20polymeric%20substances%20and%20viruses&rft.jtitle=Sedimentology&rft.au=Perri,%20Edoardo&rft.date=2018-06&rft.volume=65&rft.issue=4&rft.spage=1213&rft.epage=1245&rft.pages=1213-1245&rft.issn=0037-0746&rft.eissn=1365-3091&rft_id=info:doi/10.1111/sed.12419&rft_dat=%3Cproquest_cross%3E2047436401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047436401&rft_id=info:pmid/&rfr_iscdi=true