Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed sabkha, Qatar): Roles of bacteria, extracellular polymeric substances and viruses
In a modern peritidal microbial mat from Qatar, both biomediated carbonates and Mg‐rich clay minerals (palygorskite) were identified. The mat, ca 5 cm thick, shows a clear lamination reflecting different microbial communities. The initial precipitates within the top millimetres of the mat are compos...
Gespeichert in:
Veröffentlicht in: | Sedimentology 2018-06, Vol.65 (4), p.1213-1245 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1245 |
---|---|
container_issue | 4 |
container_start_page | 1213 |
container_title | Sedimentology |
container_volume | 65 |
creator | Perri, Edoardo Tucker, Maurice E. Słowakiewicz, Mirosław Whitaker, Fiona Bowen, Leon Perrotta, Ida D. Della Porta, Giovanna |
description | In a modern peritidal microbial mat from Qatar, both biomediated carbonates and Mg‐rich clay minerals (palygorskite) were identified. The mat, ca 5 cm thick, shows a clear lamination reflecting different microbial communities. The initial precipitates within the top millimetres of the mat are composed of Ca–Mg–Si–Al–S amorphous nanoparticles (few tens of nanometres) that replace the ultrastructure of extracellular polymeric substances. The extracellular polymeric substances are enriched in the same cations and act as a substrate for mineral nucleation. Successively, crystallites of palygorskite fibres associated with carbonate nanocrystals develop, commonly surrounding bacterial bodies. Micron‐sized crystals of low‐Mg calcite are the most common precipitates, together with subordinate aragonite, very high‐Mg calcite/dolomite and ankerite. Pyrite nanocrystals and framboids are present in the deeper layers of the mat. Calcite crystallites form conical structures, circular to triangular/hexagonal in cross‐section, evolving to crystals with rhombohedral terminations; some crystallite bundles develop into dumb‐bell and stellate forms. Spheroidal organo‐mineral structures are also common within the mat. Nanospheres, a few tens of nanometres in diameter, occur attached to coccoid bacteria and within their cells; these are interpreted as permineralized viruses and could be significant as nuclei for crystallite‐crystal precipitation. Microspheres, 1 to 10 μm in diameter, result from intracellular permineralization within bacteria or the mineralization of the bacteria themselves. Carbonates and clay minerals are commonly aggregated to form peloids, tens of microns in size, surrounded by residual organic matter. Magnesium silicate and carbonate precipitation are likely to have been driven by pH – saturation index – redox changes within the mat, related to microenvironmental chemical changes induced by the microbes – extracellular polymeric substances – viruses and their degradation. |
doi_str_mv | 10.1111/sed.12419 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047436401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047436401</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4219-bf152688bf865aafd94fff19284e7e889f6c1b55d7ea0ed8ff75591273fa36273</originalsourceid><addsrcrecordid>eNp1kclOwzAQhi0EEqVw4A0scaESoXbibNxQWaUixHaOxslYGJy42AlQXocXxaVcmctoZr7Z9BOyz9kxDzb12BzzWPByg4x4kqVRwkq-SUaMJXnEcpFtkx3vXxjjmSjKEfmegZO2gx4pdA312uh6FUhtW92hA6O_oNe2o7qjQJ-XC3Q-JDukra6dlRoMbaGnhzfoQSOGGSBfn-GI3kEPbnJC761BT62iEuoenQ4l_Owd1GjMYMDRhTXLNhRq6gfpe-jqwK-ueddu8Oh3yZYC43Hvz4_J08X54-wqmt9eXs9O5xGImJeRVDyNs6KQqshSANWUQinFy7gQmGNRlCqruUzTJkdg2BRK5Wla8jhPFCRZcGNysJ67cPZtQN9XL3ZwXVhZxUzkIskE44GarKnwvfcOVbVwugW3rDirVhpUQYPqV4PATtfshza4_B-sHs7P1h0_YvCLjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047436401</pqid></control><display><type>article</type><title>Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed sabkha, Qatar): Roles of bacteria, extracellular polymeric substances and viruses</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Perri, Edoardo ; Tucker, Maurice E. ; Słowakiewicz, Mirosław ; Whitaker, Fiona ; Bowen, Leon ; Perrotta, Ida D. ; Della Porta, Giovanna</creator><creatorcontrib>Perri, Edoardo ; Tucker, Maurice E. ; Słowakiewicz, Mirosław ; Whitaker, Fiona ; Bowen, Leon ; Perrotta, Ida D. ; Della Porta, Giovanna</creatorcontrib><description>In a modern peritidal microbial mat from Qatar, both biomediated carbonates and Mg‐rich clay minerals (palygorskite) were identified. The mat, ca 5 cm thick, shows a clear lamination reflecting different microbial communities. The initial precipitates within the top millimetres of the mat are composed of Ca–Mg–Si–Al–S amorphous nanoparticles (few tens of nanometres) that replace the ultrastructure of extracellular polymeric substances. The extracellular polymeric substances are enriched in the same cations and act as a substrate for mineral nucleation. Successively, crystallites of palygorskite fibres associated with carbonate nanocrystals develop, commonly surrounding bacterial bodies. Micron‐sized crystals of low‐Mg calcite are the most common precipitates, together with subordinate aragonite, very high‐Mg calcite/dolomite and ankerite. Pyrite nanocrystals and framboids are present in the deeper layers of the mat. Calcite crystallites form conical structures, circular to triangular/hexagonal in cross‐section, evolving to crystals with rhombohedral terminations; some crystallite bundles develop into dumb‐bell and stellate forms. Spheroidal organo‐mineral structures are also common within the mat. Nanospheres, a few tens of nanometres in diameter, occur attached to coccoid bacteria and within their cells; these are interpreted as permineralized viruses and could be significant as nuclei for crystallite‐crystal precipitation. Microspheres, 1 to 10 μm in diameter, result from intracellular permineralization within bacteria or the mineralization of the bacteria themselves. Carbonates and clay minerals are commonly aggregated to form peloids, tens of microns in size, surrounded by residual organic matter. Magnesium silicate and carbonate precipitation are likely to have been driven by pH – saturation index – redox changes within the mat, related to microenvironmental chemical changes induced by the microbes – extracellular polymeric substances – viruses and their degradation.</description><identifier>ISSN: 0037-0746</identifier><identifier>EISSN: 1365-3091</identifier><identifier>DOI: 10.1111/sed.12419</identifier><language>eng</language><publisher>Madrid: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; Aragonite ; Bacteria ; Biodegradation ; biomediated carbonate ; biomediated clay ; Calcite ; Carbonates ; Cationic polymerization ; Cations ; Chemical precipitation ; Clay ; Clay minerals ; Crystallites ; Crystals ; Dolomite ; Dolostone ; Extracellular ; extracellular polymeric substances ; Fibers ; Laminates ; Lamination ; Magnesium ; Magnesium silicates ; Microbial activity ; microbial mat ; Microbial mats ; Microorganisms ; Microspheres ; Mineralization ; Minerals ; Nanocrystals ; Nanoparticles ; Nanospheres ; Nuclei ; Nucleus ; Organic matter ; Oxidoreductions ; Palygorskite ; Precipitates ; Pyrite ; Sabkhas ; Saturation index ; Silicates ; Silicon ; Substrates ; Ultrastructure ; Viruses</subject><ispartof>Sedimentology, 2018-06, Vol.65 (4), p.1213-1245</ispartof><rights>2017 The Authors. Sedimentology © 2017 International Association of Sedimentologists</rights><rights>Journal compilation © 2018 International Association of Sedimentologists</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4219-bf152688bf865aafd94fff19284e7e889f6c1b55d7ea0ed8ff75591273fa36273</citedby><cites>FETCH-LOGICAL-a4219-bf152688bf865aafd94fff19284e7e889f6c1b55d7ea0ed8ff75591273fa36273</cites><orcidid>0000-0001-9825-7098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsed.12419$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsed.12419$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Perri, Edoardo</creatorcontrib><creatorcontrib>Tucker, Maurice E.</creatorcontrib><creatorcontrib>Słowakiewicz, Mirosław</creatorcontrib><creatorcontrib>Whitaker, Fiona</creatorcontrib><creatorcontrib>Bowen, Leon</creatorcontrib><creatorcontrib>Perrotta, Ida D.</creatorcontrib><creatorcontrib>Della Porta, Giovanna</creatorcontrib><title>Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed sabkha, Qatar): Roles of bacteria, extracellular polymeric substances and viruses</title><title>Sedimentology</title><description>In a modern peritidal microbial mat from Qatar, both biomediated carbonates and Mg‐rich clay minerals (palygorskite) were identified. The mat, ca 5 cm thick, shows a clear lamination reflecting different microbial communities. The initial precipitates within the top millimetres of the mat are composed of Ca–Mg–Si–Al–S amorphous nanoparticles (few tens of nanometres) that replace the ultrastructure of extracellular polymeric substances. The extracellular polymeric substances are enriched in the same cations and act as a substrate for mineral nucleation. Successively, crystallites of palygorskite fibres associated with carbonate nanocrystals develop, commonly surrounding bacterial bodies. Micron‐sized crystals of low‐Mg calcite are the most common precipitates, together with subordinate aragonite, very high‐Mg calcite/dolomite and ankerite. Pyrite nanocrystals and framboids are present in the deeper layers of the mat. Calcite crystallites form conical structures, circular to triangular/hexagonal in cross‐section, evolving to crystals with rhombohedral terminations; some crystallite bundles develop into dumb‐bell and stellate forms. Spheroidal organo‐mineral structures are also common within the mat. Nanospheres, a few tens of nanometres in diameter, occur attached to coccoid bacteria and within their cells; these are interpreted as permineralized viruses and could be significant as nuclei for crystallite‐crystal precipitation. Microspheres, 1 to 10 μm in diameter, result from intracellular permineralization within bacteria or the mineralization of the bacteria themselves. Carbonates and clay minerals are commonly aggregated to form peloids, tens of microns in size, surrounded by residual organic matter. Magnesium silicate and carbonate precipitation are likely to have been driven by pH – saturation index – redox changes within the mat, related to microenvironmental chemical changes induced by the microbes – extracellular polymeric substances – viruses and their degradation.</description><subject>Aluminum</subject><subject>Aragonite</subject><subject>Bacteria</subject><subject>Biodegradation</subject><subject>biomediated carbonate</subject><subject>biomediated clay</subject><subject>Calcite</subject><subject>Carbonates</subject><subject>Cationic polymerization</subject><subject>Cations</subject><subject>Chemical precipitation</subject><subject>Clay</subject><subject>Clay minerals</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Dolomite</subject><subject>Dolostone</subject><subject>Extracellular</subject><subject>extracellular polymeric substances</subject><subject>Fibers</subject><subject>Laminates</subject><subject>Lamination</subject><subject>Magnesium</subject><subject>Magnesium silicates</subject><subject>Microbial activity</subject><subject>microbial mat</subject><subject>Microbial mats</subject><subject>Microorganisms</subject><subject>Microspheres</subject><subject>Mineralization</subject><subject>Minerals</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><subject>Nuclei</subject><subject>Nucleus</subject><subject>Organic matter</subject><subject>Oxidoreductions</subject><subject>Palygorskite</subject><subject>Precipitates</subject><subject>Pyrite</subject><subject>Sabkhas</subject><subject>Saturation index</subject><subject>Silicates</subject><subject>Silicon</subject><subject>Substrates</subject><subject>Ultrastructure</subject><subject>Viruses</subject><issn>0037-0746</issn><issn>1365-3091</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kclOwzAQhi0EEqVw4A0scaESoXbibNxQWaUixHaOxslYGJy42AlQXocXxaVcmctoZr7Z9BOyz9kxDzb12BzzWPByg4x4kqVRwkq-SUaMJXnEcpFtkx3vXxjjmSjKEfmegZO2gx4pdA312uh6FUhtW92hA6O_oNe2o7qjQJ-XC3Q-JDukra6dlRoMbaGnhzfoQSOGGSBfn-GI3kEPbnJC761BT62iEuoenQ4l_Owd1GjMYMDRhTXLNhRq6gfpe-jqwK-ueddu8Oh3yZYC43Hvz4_J08X54-wqmt9eXs9O5xGImJeRVDyNs6KQqshSANWUQinFy7gQmGNRlCqruUzTJkdg2BRK5Wla8jhPFCRZcGNysJ67cPZtQN9XL3ZwXVhZxUzkIskE44GarKnwvfcOVbVwugW3rDirVhpUQYPqV4PATtfshza4_B-sHs7P1h0_YvCLjQ</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Perri, Edoardo</creator><creator>Tucker, Maurice E.</creator><creator>Słowakiewicz, Mirosław</creator><creator>Whitaker, Fiona</creator><creator>Bowen, Leon</creator><creator>Perrotta, Ida D.</creator><creator>Della Porta, Giovanna</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9825-7098</orcidid></search><sort><creationdate>201806</creationdate><title>Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed sabkha, Qatar): Roles of bacteria, extracellular polymeric substances and viruses</title><author>Perri, Edoardo ; Tucker, Maurice E. ; Słowakiewicz, Mirosław ; Whitaker, Fiona ; Bowen, Leon ; Perrotta, Ida D. ; Della Porta, Giovanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4219-bf152688bf865aafd94fff19284e7e889f6c1b55d7ea0ed8ff75591273fa36273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Aragonite</topic><topic>Bacteria</topic><topic>Biodegradation</topic><topic>biomediated carbonate</topic><topic>biomediated clay</topic><topic>Calcite</topic><topic>Carbonates</topic><topic>Cationic polymerization</topic><topic>Cations</topic><topic>Chemical precipitation</topic><topic>Clay</topic><topic>Clay minerals</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Dolomite</topic><topic>Dolostone</topic><topic>Extracellular</topic><topic>extracellular polymeric substances</topic><topic>Fibers</topic><topic>Laminates</topic><topic>Lamination</topic><topic>Magnesium</topic><topic>Magnesium silicates</topic><topic>Microbial activity</topic><topic>microbial mat</topic><topic>Microbial mats</topic><topic>Microorganisms</topic><topic>Microspheres</topic><topic>Mineralization</topic><topic>Minerals</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><topic>Nuclei</topic><topic>Nucleus</topic><topic>Organic matter</topic><topic>Oxidoreductions</topic><topic>Palygorskite</topic><topic>Precipitates</topic><topic>Pyrite</topic><topic>Sabkhas</topic><topic>Saturation index</topic><topic>Silicates</topic><topic>Silicon</topic><topic>Substrates</topic><topic>Ultrastructure</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perri, Edoardo</creatorcontrib><creatorcontrib>Tucker, Maurice E.</creatorcontrib><creatorcontrib>Słowakiewicz, Mirosław</creatorcontrib><creatorcontrib>Whitaker, Fiona</creatorcontrib><creatorcontrib>Bowen, Leon</creatorcontrib><creatorcontrib>Perrotta, Ida D.</creatorcontrib><creatorcontrib>Della Porta, Giovanna</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Sedimentology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perri, Edoardo</au><au>Tucker, Maurice E.</au><au>Słowakiewicz, Mirosław</au><au>Whitaker, Fiona</au><au>Bowen, Leon</au><au>Perrotta, Ida D.</au><au>Della Porta, Giovanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed sabkha, Qatar): Roles of bacteria, extracellular polymeric substances and viruses</atitle><jtitle>Sedimentology</jtitle><date>2018-06</date><risdate>2018</risdate><volume>65</volume><issue>4</issue><spage>1213</spage><epage>1245</epage><pages>1213-1245</pages><issn>0037-0746</issn><eissn>1365-3091</eissn><abstract>In a modern peritidal microbial mat from Qatar, both biomediated carbonates and Mg‐rich clay minerals (palygorskite) were identified. The mat, ca 5 cm thick, shows a clear lamination reflecting different microbial communities. The initial precipitates within the top millimetres of the mat are composed of Ca–Mg–Si–Al–S amorphous nanoparticles (few tens of nanometres) that replace the ultrastructure of extracellular polymeric substances. The extracellular polymeric substances are enriched in the same cations and act as a substrate for mineral nucleation. Successively, crystallites of palygorskite fibres associated with carbonate nanocrystals develop, commonly surrounding bacterial bodies. Micron‐sized crystals of low‐Mg calcite are the most common precipitates, together with subordinate aragonite, very high‐Mg calcite/dolomite and ankerite. Pyrite nanocrystals and framboids are present in the deeper layers of the mat. Calcite crystallites form conical structures, circular to triangular/hexagonal in cross‐section, evolving to crystals with rhombohedral terminations; some crystallite bundles develop into dumb‐bell and stellate forms. Spheroidal organo‐mineral structures are also common within the mat. Nanospheres, a few tens of nanometres in diameter, occur attached to coccoid bacteria and within their cells; these are interpreted as permineralized viruses and could be significant as nuclei for crystallite‐crystal precipitation. Microspheres, 1 to 10 μm in diameter, result from intracellular permineralization within bacteria or the mineralization of the bacteria themselves. Carbonates and clay minerals are commonly aggregated to form peloids, tens of microns in size, surrounded by residual organic matter. Magnesium silicate and carbonate precipitation are likely to have been driven by pH – saturation index – redox changes within the mat, related to microenvironmental chemical changes induced by the microbes – extracellular polymeric substances – viruses and their degradation.</abstract><cop>Madrid</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/sed.12419</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-9825-7098</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-0746 |
ispartof | Sedimentology, 2018-06, Vol.65 (4), p.1213-1245 |
issn | 0037-0746 1365-3091 |
language | eng |
recordid | cdi_proquest_journals_2047436401 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aluminum Aragonite Bacteria Biodegradation biomediated carbonate biomediated clay Calcite Carbonates Cationic polymerization Cations Chemical precipitation Clay Clay minerals Crystallites Crystals Dolomite Dolostone Extracellular extracellular polymeric substances Fibers Laminates Lamination Magnesium Magnesium silicates Microbial activity microbial mat Microbial mats Microorganisms Microspheres Mineralization Minerals Nanocrystals Nanoparticles Nanospheres Nuclei Nucleus Organic matter Oxidoreductions Palygorskite Precipitates Pyrite Sabkhas Saturation index Silicates Silicon Substrates Ultrastructure Viruses |
title | Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed sabkha, Qatar): Roles of bacteria, extracellular polymeric substances and viruses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A08%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbonate%20and%20silicate%20biomineralization%20in%20a%20hypersaline%20microbial%20mat%20(Mesaieed%20sabkha,%20Qatar):%20Roles%20of%20bacteria,%20extracellular%20polymeric%20substances%20and%20viruses&rft.jtitle=Sedimentology&rft.au=Perri,%20Edoardo&rft.date=2018-06&rft.volume=65&rft.issue=4&rft.spage=1213&rft.epage=1245&rft.pages=1213-1245&rft.issn=0037-0746&rft.eissn=1365-3091&rft_id=info:doi/10.1111/sed.12419&rft_dat=%3Cproquest_cross%3E2047436401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047436401&rft_id=info:pmid/&rfr_iscdi=true |