Highly Active Trimetallic NiFeCr Layered Double Hydroxide Electrocatalysts for Oxygen Evolution Reaction
The development of efficient and robust earth‐abundant electrocatalysts for the oxygen evolution reaction (OER) is an ongoing challenge. Here, a novel and stable trimetallic NiFeCr layered double hydroxide (LDH) electrocatalyst for improving OER kinetics is rationally designed and synthesized. Elect...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2018-05, Vol.8 (15), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 8 |
creator | Yang, Yang Dang, Lianna Shearer, Melinda J. Sheng, Hongyuan Li, Wenjie Chen, Jie Xiao, Peng Zhang, Yunhuai Hamers, Robert J. Jin, Song |
description | The development of efficient and robust earth‐abundant electrocatalysts for the oxygen evolution reaction (OER) is an ongoing challenge. Here, a novel and stable trimetallic NiFeCr layered double hydroxide (LDH) electrocatalyst for improving OER kinetics is rationally designed and synthesized. Electrochemical testing of a series of trimetallic NiFeCr LDH materials at similar catalyst loading and electrochemical surface area shows that the molar ratio Ni:Fe:Cr = 6:2:1 exhibits the best intrinsic OER catalytic activity compared to other NiFeCr LDH compositions. Furthermore, these nanostructures are directly grown on conductive carbon paper for a high surface area 3D electrode that can achieve a catalytic current density of 25 mA cm−2 at an overpotential as low as 225 mV and a small Tafel slope of 69 mV dec−1 in alkaline electrolyte. The optimized NiFeCr catalyst is stable under OER conditions and X‐ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, and elemental analysis confirm the stability of trimetallic NiFeCr LDH after electrochemical testing. Due to the synergistic interactions among the metal centers, trimetallic NiFeCr LDH is significantly more active than NiFe LDH and among the most active OER catalysts to date. This work also presents general strategies to design more efficient metal oxide/hydroxide OER electrocatalysts.
NiFe‐layered double hydroxides (LDHs) and oxyhydroxides have been the benchmark electrocatalysts toward oxygen evolution reaction. When a third and multivalent Cr metal ion is rationally added to the modular LDH structures, the highest intrinsic catalytic activity and performance are achieved with earth‐abundant trimetallic NiFeCr LDH electrocatalysts. |
doi_str_mv | 10.1002/aenm.201703189 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047372666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047372666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4719-e76e85eaf0dfac914697222cccf56f275f3f80eb01e364958716343342209253</originalsourceid><addsrcrecordid>eNqFkM1PwkAQxRujiQS5et7Ec3G_um2PBIuYICSG-2bZzsKS0sXdFu1_bwkGj85l3uH3ZvJeFD0SPCYY02cF9WFMMUkxI1l-Ew2IIDwWGce3V83ofTQKYY_74TnBjA2i3dxud1WHJrqxJ0Brbw_QqKqyGi3tDKYeLVQHHkr04tpNBWjeld592xJQUYFuvNOq57vQBGScR6vvbgs1Kk6uahvravQBSp_FQ3RnVBVg9LuH0XpWrKfzeLF6fZtOFrHmKcljSAVkCSiDS6N0TrjIU0qp1tokwtA0McxkGDaYABM8T7KUCMYZ45TinCZsGD1dzh69-2whNHLvWl_3HyXFPGUpFUL01PhCae9C8GDksQ-ufCcJluc-5blPee2zN-QXw5etoPuHlpNi-f7n_QGxBXl7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047372666</pqid></control><display><type>article</type><title>Highly Active Trimetallic NiFeCr Layered Double Hydroxide Electrocatalysts for Oxygen Evolution Reaction</title><source>Wiley Online Library</source><creator>Yang, Yang ; Dang, Lianna ; Shearer, Melinda J. ; Sheng, Hongyuan ; Li, Wenjie ; Chen, Jie ; Xiao, Peng ; Zhang, Yunhuai ; Hamers, Robert J. ; Jin, Song</creator><creatorcontrib>Yang, Yang ; Dang, Lianna ; Shearer, Melinda J. ; Sheng, Hongyuan ; Li, Wenjie ; Chen, Jie ; Xiao, Peng ; Zhang, Yunhuai ; Hamers, Robert J. ; Jin, Song</creatorcontrib><description>The development of efficient and robust earth‐abundant electrocatalysts for the oxygen evolution reaction (OER) is an ongoing challenge. Here, a novel and stable trimetallic NiFeCr layered double hydroxide (LDH) electrocatalyst for improving OER kinetics is rationally designed and synthesized. Electrochemical testing of a series of trimetallic NiFeCr LDH materials at similar catalyst loading and electrochemical surface area shows that the molar ratio Ni:Fe:Cr = 6:2:1 exhibits the best intrinsic OER catalytic activity compared to other NiFeCr LDH compositions. Furthermore, these nanostructures are directly grown on conductive carbon paper for a high surface area 3D electrode that can achieve a catalytic current density of 25 mA cm−2 at an overpotential as low as 225 mV and a small Tafel slope of 69 mV dec−1 in alkaline electrolyte. The optimized NiFeCr catalyst is stable under OER conditions and X‐ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, and elemental analysis confirm the stability of trimetallic NiFeCr LDH after electrochemical testing. Due to the synergistic interactions among the metal centers, trimetallic NiFeCr LDH is significantly more active than NiFe LDH and among the most active OER catalysts to date. This work also presents general strategies to design more efficient metal oxide/hydroxide OER electrocatalysts.
NiFe‐layered double hydroxides (LDHs) and oxyhydroxides have been the benchmark electrocatalysts toward oxygen evolution reaction. When a third and multivalent Cr metal ion is rationally added to the modular LDH structures, the highest intrinsic catalytic activity and performance are achieved with earth‐abundant trimetallic NiFeCr LDH electrocatalysts.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201703189</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalysts ; Catalytic activity ; earth‐abundant electrocatalysts ; Electrocatalysts ; Electron paramagnetic resonance ; electron paramagnetic resonance (EPR) ; Hydroxides ; Intermetallic compounds ; Iron compounds ; Nickel compounds ; oxygen evolution reaction (OER) ; Oxygen evolution reactions ; Reaction kinetics ; Spectrum analysis ; Stability analysis ; Surface area ; trimetallic NiFeCr layered double hydroxide (LDH)</subject><ispartof>Advanced energy materials, 2018-05, Vol.8 (15), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4719-e76e85eaf0dfac914697222cccf56f275f3f80eb01e364958716343342209253</citedby><cites>FETCH-LOGICAL-c4719-e76e85eaf0dfac914697222cccf56f275f3f80eb01e364958716343342209253</cites><orcidid>0000-0001-8693-7010 ; 0000-0003-3821-9625 ; 0000-0003-3002-8314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201703189$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201703189$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Dang, Lianna</creatorcontrib><creatorcontrib>Shearer, Melinda J.</creatorcontrib><creatorcontrib>Sheng, Hongyuan</creatorcontrib><creatorcontrib>Li, Wenjie</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Xiao, Peng</creatorcontrib><creatorcontrib>Zhang, Yunhuai</creatorcontrib><creatorcontrib>Hamers, Robert J.</creatorcontrib><creatorcontrib>Jin, Song</creatorcontrib><title>Highly Active Trimetallic NiFeCr Layered Double Hydroxide Electrocatalysts for Oxygen Evolution Reaction</title><title>Advanced energy materials</title><description>The development of efficient and robust earth‐abundant electrocatalysts for the oxygen evolution reaction (OER) is an ongoing challenge. Here, a novel and stable trimetallic NiFeCr layered double hydroxide (LDH) electrocatalyst for improving OER kinetics is rationally designed and synthesized. Electrochemical testing of a series of trimetallic NiFeCr LDH materials at similar catalyst loading and electrochemical surface area shows that the molar ratio Ni:Fe:Cr = 6:2:1 exhibits the best intrinsic OER catalytic activity compared to other NiFeCr LDH compositions. Furthermore, these nanostructures are directly grown on conductive carbon paper for a high surface area 3D electrode that can achieve a catalytic current density of 25 mA cm−2 at an overpotential as low as 225 mV and a small Tafel slope of 69 mV dec−1 in alkaline electrolyte. The optimized NiFeCr catalyst is stable under OER conditions and X‐ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, and elemental analysis confirm the stability of trimetallic NiFeCr LDH after electrochemical testing. Due to the synergistic interactions among the metal centers, trimetallic NiFeCr LDH is significantly more active than NiFe LDH and among the most active OER catalysts to date. This work also presents general strategies to design more efficient metal oxide/hydroxide OER electrocatalysts.
NiFe‐layered double hydroxides (LDHs) and oxyhydroxides have been the benchmark electrocatalysts toward oxygen evolution reaction. When a third and multivalent Cr metal ion is rationally added to the modular LDH structures, the highest intrinsic catalytic activity and performance are achieved with earth‐abundant trimetallic NiFeCr LDH electrocatalysts.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>earth‐abundant electrocatalysts</subject><subject>Electrocatalysts</subject><subject>Electron paramagnetic resonance</subject><subject>electron paramagnetic resonance (EPR)</subject><subject>Hydroxides</subject><subject>Intermetallic compounds</subject><subject>Iron compounds</subject><subject>Nickel compounds</subject><subject>oxygen evolution reaction (OER)</subject><subject>Oxygen evolution reactions</subject><subject>Reaction kinetics</subject><subject>Spectrum analysis</subject><subject>Stability analysis</subject><subject>Surface area</subject><subject>trimetallic NiFeCr layered double hydroxide (LDH)</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1PwkAQxRujiQS5et7Ec3G_um2PBIuYICSG-2bZzsKS0sXdFu1_bwkGj85l3uH3ZvJeFD0SPCYY02cF9WFMMUkxI1l-Ew2IIDwWGce3V83ofTQKYY_74TnBjA2i3dxud1WHJrqxJ0Brbw_QqKqyGi3tDKYeLVQHHkr04tpNBWjeld592xJQUYFuvNOq57vQBGScR6vvbgs1Kk6uahvravQBSp_FQ3RnVBVg9LuH0XpWrKfzeLF6fZtOFrHmKcljSAVkCSiDS6N0TrjIU0qp1tokwtA0McxkGDaYABM8T7KUCMYZ45TinCZsGD1dzh69-2whNHLvWl_3HyXFPGUpFUL01PhCae9C8GDksQ-ufCcJluc-5blPee2zN-QXw5etoPuHlpNi-f7n_QGxBXl7</recordid><startdate>20180525</startdate><enddate>20180525</enddate><creator>Yang, Yang</creator><creator>Dang, Lianna</creator><creator>Shearer, Melinda J.</creator><creator>Sheng, Hongyuan</creator><creator>Li, Wenjie</creator><creator>Chen, Jie</creator><creator>Xiao, Peng</creator><creator>Zhang, Yunhuai</creator><creator>Hamers, Robert J.</creator><creator>Jin, Song</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8693-7010</orcidid><orcidid>https://orcid.org/0000-0003-3821-9625</orcidid><orcidid>https://orcid.org/0000-0003-3002-8314</orcidid></search><sort><creationdate>20180525</creationdate><title>Highly Active Trimetallic NiFeCr Layered Double Hydroxide Electrocatalysts for Oxygen Evolution Reaction</title><author>Yang, Yang ; Dang, Lianna ; Shearer, Melinda J. ; Sheng, Hongyuan ; Li, Wenjie ; Chen, Jie ; Xiao, Peng ; Zhang, Yunhuai ; Hamers, Robert J. ; Jin, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4719-e76e85eaf0dfac914697222cccf56f275f3f80eb01e364958716343342209253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>earth‐abundant electrocatalysts</topic><topic>Electrocatalysts</topic><topic>Electron paramagnetic resonance</topic><topic>electron paramagnetic resonance (EPR)</topic><topic>Hydroxides</topic><topic>Intermetallic compounds</topic><topic>Iron compounds</topic><topic>Nickel compounds</topic><topic>oxygen evolution reaction (OER)</topic><topic>Oxygen evolution reactions</topic><topic>Reaction kinetics</topic><topic>Spectrum analysis</topic><topic>Stability analysis</topic><topic>Surface area</topic><topic>trimetallic NiFeCr layered double hydroxide (LDH)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Dang, Lianna</creatorcontrib><creatorcontrib>Shearer, Melinda J.</creatorcontrib><creatorcontrib>Sheng, Hongyuan</creatorcontrib><creatorcontrib>Li, Wenjie</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Xiao, Peng</creatorcontrib><creatorcontrib>Zhang, Yunhuai</creatorcontrib><creatorcontrib>Hamers, Robert J.</creatorcontrib><creatorcontrib>Jin, Song</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yang</au><au>Dang, Lianna</au><au>Shearer, Melinda J.</au><au>Sheng, Hongyuan</au><au>Li, Wenjie</au><au>Chen, Jie</au><au>Xiao, Peng</au><au>Zhang, Yunhuai</au><au>Hamers, Robert J.</au><au>Jin, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Active Trimetallic NiFeCr Layered Double Hydroxide Electrocatalysts for Oxygen Evolution Reaction</atitle><jtitle>Advanced energy materials</jtitle><date>2018-05-25</date><risdate>2018</risdate><volume>8</volume><issue>15</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The development of efficient and robust earth‐abundant electrocatalysts for the oxygen evolution reaction (OER) is an ongoing challenge. Here, a novel and stable trimetallic NiFeCr layered double hydroxide (LDH) electrocatalyst for improving OER kinetics is rationally designed and synthesized. Electrochemical testing of a series of trimetallic NiFeCr LDH materials at similar catalyst loading and electrochemical surface area shows that the molar ratio Ni:Fe:Cr = 6:2:1 exhibits the best intrinsic OER catalytic activity compared to other NiFeCr LDH compositions. Furthermore, these nanostructures are directly grown on conductive carbon paper for a high surface area 3D electrode that can achieve a catalytic current density of 25 mA cm−2 at an overpotential as low as 225 mV and a small Tafel slope of 69 mV dec−1 in alkaline electrolyte. The optimized NiFeCr catalyst is stable under OER conditions and X‐ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, and elemental analysis confirm the stability of trimetallic NiFeCr LDH after electrochemical testing. Due to the synergistic interactions among the metal centers, trimetallic NiFeCr LDH is significantly more active than NiFe LDH and among the most active OER catalysts to date. This work also presents general strategies to design more efficient metal oxide/hydroxide OER electrocatalysts.
NiFe‐layered double hydroxides (LDHs) and oxyhydroxides have been the benchmark electrocatalysts toward oxygen evolution reaction. When a third and multivalent Cr metal ion is rationally added to the modular LDH structures, the highest intrinsic catalytic activity and performance are achieved with earth‐abundant trimetallic NiFeCr LDH electrocatalysts.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201703189</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8693-7010</orcidid><orcidid>https://orcid.org/0000-0003-3821-9625</orcidid><orcidid>https://orcid.org/0000-0003-3002-8314</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2018-05, Vol.8 (15), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2047372666 |
source | Wiley Online Library |
subjects | Catalysis Catalysts Catalytic activity earth‐abundant electrocatalysts Electrocatalysts Electron paramagnetic resonance electron paramagnetic resonance (EPR) Hydroxides Intermetallic compounds Iron compounds Nickel compounds oxygen evolution reaction (OER) Oxygen evolution reactions Reaction kinetics Spectrum analysis Stability analysis Surface area trimetallic NiFeCr layered double hydroxide (LDH) |
title | Highly Active Trimetallic NiFeCr Layered Double Hydroxide Electrocatalysts for Oxygen Evolution Reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Active%20Trimetallic%20NiFeCr%20Layered%20Double%20Hydroxide%20Electrocatalysts%20for%20Oxygen%20Evolution%20Reaction&rft.jtitle=Advanced%20energy%20materials&rft.au=Yang,%20Yang&rft.date=2018-05-25&rft.volume=8&rft.issue=15&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201703189&rft_dat=%3Cproquest_cross%3E2047372666%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047372666&rft_id=info:pmid/&rfr_iscdi=true |