High‐Performance Oxygen Reduction Electrocatalysis Enabled by 3D PdNi Nanocorals with Hierarchical Porosity
Cost‐effective electrocatalysts for the oxygen reduction reaction (ORR) play pivotal roles in energy conversion and storage processes. Designing a 3D networked bimetallic nanostructure with hierarchical porosity represents a reliable and effective strategy for the advancement of electrocatalysts wit...
Gespeichert in:
Veröffentlicht in: | Particle & particle systems characterization 2018-05, Vol.35 (5), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Particle & particle systems characterization |
container_volume | 35 |
creator | Liu, Zhenyuan Yang, Xiaoyu Cui, Lirui Shi, Zhaoping Lu, Bingqing Guo, Xiaomeng Zhang, Jubing Xu, Lin Tang, Yawen Xiang, Yan |
description | Cost‐effective electrocatalysts for the oxygen reduction reaction (ORR) play pivotal roles in energy conversion and storage processes. Designing a 3D networked bimetallic nanostructure with hierarchical porosity represents a reliable and effective strategy for the advancement of electrocatalysts with greatly improved activity and stability. However, it still remains a tremendous challenge in fabricating such fantastic nanostructure via a feasible and economical approach. Herein, a facile cyanogel‐bridged synthetic strategy is demonstrated to fabricate PdNi 3D nanocorals with hierarchical porosity. The elaborate integration of electronic and geometric effects endows the as‐fabricated PdNi 3D nanocorals with substantially enhanced activity and durability toward the ORR, as compared with the monometallic counterparts (pure Ni and Pd), PdNi nanoparticles, and commercial Pd black catalyst. More importantly, even after 5000 cycles of accelerated durability tests, the PdNi nanocorals can still maintain well in the catalytic activities, composition, and architectural features. It is believed that the as‐synthesized PdNi nanocorals may hold great promise in practical fuel cells and industrial applications. Furthermore, due to its simplicity and scale‐up production capability, the present cyanogel‐bridged synthetic strategy provides an attractive method for achieving other bi/trimetallic nanoalloys with both structural and compositional advantages for diverse electrochemical applications and beyond.
A facile cyanogel‐bridged synthetic strategy is developed to fabricate PdNi 3D nanocorals with hierarchical porosity. The as‐fabricated porous PdNi 3D nanocorals exhibit much enhanced catalytic activity and stability toward the oxygen reduction reaction due to their unique 3D networked nanostructure with hierarchical porosity and synergistic effect of their alloyed components. |
doi_str_mv | 10.1002/ppsc.201700366 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047314117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047314117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3546-80fb9b910eb53daec9722e9feb9ce00a1d8cbabe5358f134610b4743f1e28f403</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQC0EEqWwMltiTjnH-RxRKRSpKhEfs2U7l9ZVGhc7VcnGT-A38ktIVQQj0y3v3Z0eIZcMRgwgvN5svB6FwFIAniRHZMDikAURY-kxGUDOowCyJDklZ96vACCJWTIg66lZLL8-Pgt0lXVr2Wikj-_dAhv6hOVWt8Y2dFKjbp3VspV1542nk0aqGkuqOspvaVHODZ3LxmrrZO3pzrRLOjXopNNLo2VNC-usN213Tk6qnsCLnzkkr3eTl_E0mD3eP4xvZoHmcZQEGVQqVzkDVDEvJeo8DUPMK1S5RgDJykwrqTDmcVYxHiUMVJRGvGIYZlUEfEiuDns3zr5t0bdiZbeu6U-KEKKUs32VnhodKN1_5x1WYuPMWrpOMBD7pGKfVPwm7YX8IOxMjd0_tCiK5_Gf-w0OGH0t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047314117</pqid></control><display><type>article</type><title>High‐Performance Oxygen Reduction Electrocatalysis Enabled by 3D PdNi Nanocorals with Hierarchical Porosity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Zhenyuan ; Yang, Xiaoyu ; Cui, Lirui ; Shi, Zhaoping ; Lu, Bingqing ; Guo, Xiaomeng ; Zhang, Jubing ; Xu, Lin ; Tang, Yawen ; Xiang, Yan</creator><creatorcontrib>Liu, Zhenyuan ; Yang, Xiaoyu ; Cui, Lirui ; Shi, Zhaoping ; Lu, Bingqing ; Guo, Xiaomeng ; Zhang, Jubing ; Xu, Lin ; Tang, Yawen ; Xiang, Yan</creatorcontrib><description>Cost‐effective electrocatalysts for the oxygen reduction reaction (ORR) play pivotal roles in energy conversion and storage processes. Designing a 3D networked bimetallic nanostructure with hierarchical porosity represents a reliable and effective strategy for the advancement of electrocatalysts with greatly improved activity and stability. However, it still remains a tremendous challenge in fabricating such fantastic nanostructure via a feasible and economical approach. Herein, a facile cyanogel‐bridged synthetic strategy is demonstrated to fabricate PdNi 3D nanocorals with hierarchical porosity. The elaborate integration of electronic and geometric effects endows the as‐fabricated PdNi 3D nanocorals with substantially enhanced activity and durability toward the ORR, as compared with the monometallic counterparts (pure Ni and Pd), PdNi nanoparticles, and commercial Pd black catalyst. More importantly, even after 5000 cycles of accelerated durability tests, the PdNi nanocorals can still maintain well in the catalytic activities, composition, and architectural features. It is believed that the as‐synthesized PdNi nanocorals may hold great promise in practical fuel cells and industrial applications. Furthermore, due to its simplicity and scale‐up production capability, the present cyanogel‐bridged synthetic strategy provides an attractive method for achieving other bi/trimetallic nanoalloys with both structural and compositional advantages for diverse electrochemical applications and beyond.
A facile cyanogel‐bridged synthetic strategy is developed to fabricate PdNi 3D nanocorals with hierarchical porosity. The as‐fabricated porous PdNi 3D nanocorals exhibit much enhanced catalytic activity and stability toward the oxygen reduction reaction due to their unique 3D networked nanostructure with hierarchical porosity and synergistic effect of their alloyed components.</description><identifier>ISSN: 0934-0866</identifier><identifier>EISSN: 1521-4117</identifier><identifier>DOI: 10.1002/ppsc.201700366</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Accelerated tests ; Bimetals ; Catalysis ; cyanogel ; Durability ; Electrocatalysts ; Energy conversion ; Energy storage ; Fuel cells ; Industrial applications ; Nanostructure ; oxygen reduction reaction ; Oxygen reduction reactions ; PdNi alloys ; PEMFCs ; Porosity ; porous network ; Strategy</subject><ispartof>Particle & particle systems characterization, 2018-05, Vol.35 (5), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3546-80fb9b910eb53daec9722e9feb9ce00a1d8cbabe5358f134610b4743f1e28f403</citedby><cites>FETCH-LOGICAL-c3546-80fb9b910eb53daec9722e9feb9ce00a1d8cbabe5358f134610b4743f1e28f403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fppsc.201700366$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fppsc.201700366$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Zhenyuan</creatorcontrib><creatorcontrib>Yang, Xiaoyu</creatorcontrib><creatorcontrib>Cui, Lirui</creatorcontrib><creatorcontrib>Shi, Zhaoping</creatorcontrib><creatorcontrib>Lu, Bingqing</creatorcontrib><creatorcontrib>Guo, Xiaomeng</creatorcontrib><creatorcontrib>Zhang, Jubing</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Tang, Yawen</creatorcontrib><creatorcontrib>Xiang, Yan</creatorcontrib><title>High‐Performance Oxygen Reduction Electrocatalysis Enabled by 3D PdNi Nanocorals with Hierarchical Porosity</title><title>Particle & particle systems characterization</title><description>Cost‐effective electrocatalysts for the oxygen reduction reaction (ORR) play pivotal roles in energy conversion and storage processes. Designing a 3D networked bimetallic nanostructure with hierarchical porosity represents a reliable and effective strategy for the advancement of electrocatalysts with greatly improved activity and stability. However, it still remains a tremendous challenge in fabricating such fantastic nanostructure via a feasible and economical approach. Herein, a facile cyanogel‐bridged synthetic strategy is demonstrated to fabricate PdNi 3D nanocorals with hierarchical porosity. The elaborate integration of electronic and geometric effects endows the as‐fabricated PdNi 3D nanocorals with substantially enhanced activity and durability toward the ORR, as compared with the monometallic counterparts (pure Ni and Pd), PdNi nanoparticles, and commercial Pd black catalyst. More importantly, even after 5000 cycles of accelerated durability tests, the PdNi nanocorals can still maintain well in the catalytic activities, composition, and architectural features. It is believed that the as‐synthesized PdNi nanocorals may hold great promise in practical fuel cells and industrial applications. Furthermore, due to its simplicity and scale‐up production capability, the present cyanogel‐bridged synthetic strategy provides an attractive method for achieving other bi/trimetallic nanoalloys with both structural and compositional advantages for diverse electrochemical applications and beyond.
A facile cyanogel‐bridged synthetic strategy is developed to fabricate PdNi 3D nanocorals with hierarchical porosity. The as‐fabricated porous PdNi 3D nanocorals exhibit much enhanced catalytic activity and stability toward the oxygen reduction reaction due to their unique 3D networked nanostructure with hierarchical porosity and synergistic effect of their alloyed components.</description><subject>Accelerated tests</subject><subject>Bimetals</subject><subject>Catalysis</subject><subject>cyanogel</subject><subject>Durability</subject><subject>Electrocatalysts</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Fuel cells</subject><subject>Industrial applications</subject><subject>Nanostructure</subject><subject>oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>PdNi alloys</subject><subject>PEMFCs</subject><subject>Porosity</subject><subject>porous network</subject><subject>Strategy</subject><issn>0934-0866</issn><issn>1521-4117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQQC0EEqWwMltiTjnH-RxRKRSpKhEfs2U7l9ZVGhc7VcnGT-A38ktIVQQj0y3v3Z0eIZcMRgwgvN5svB6FwFIAniRHZMDikAURY-kxGUDOowCyJDklZ96vACCJWTIg66lZLL8-Pgt0lXVr2Wikj-_dAhv6hOVWt8Y2dFKjbp3VspV1542nk0aqGkuqOspvaVHODZ3LxmrrZO3pzrRLOjXopNNLo2VNC-usN213Tk6qnsCLnzkkr3eTl_E0mD3eP4xvZoHmcZQEGVQqVzkDVDEvJeo8DUPMK1S5RgDJykwrqTDmcVYxHiUMVJRGvGIYZlUEfEiuDns3zr5t0bdiZbeu6U-KEKKUs32VnhodKN1_5x1WYuPMWrpOMBD7pGKfVPwm7YX8IOxMjd0_tCiK5_Gf-w0OGH0t</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Liu, Zhenyuan</creator><creator>Yang, Xiaoyu</creator><creator>Cui, Lirui</creator><creator>Shi, Zhaoping</creator><creator>Lu, Bingqing</creator><creator>Guo, Xiaomeng</creator><creator>Zhang, Jubing</creator><creator>Xu, Lin</creator><creator>Tang, Yawen</creator><creator>Xiang, Yan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201805</creationdate><title>High‐Performance Oxygen Reduction Electrocatalysis Enabled by 3D PdNi Nanocorals with Hierarchical Porosity</title><author>Liu, Zhenyuan ; Yang, Xiaoyu ; Cui, Lirui ; Shi, Zhaoping ; Lu, Bingqing ; Guo, Xiaomeng ; Zhang, Jubing ; Xu, Lin ; Tang, Yawen ; Xiang, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3546-80fb9b910eb53daec9722e9feb9ce00a1d8cbabe5358f134610b4743f1e28f403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accelerated tests</topic><topic>Bimetals</topic><topic>Catalysis</topic><topic>cyanogel</topic><topic>Durability</topic><topic>Electrocatalysts</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Fuel cells</topic><topic>Industrial applications</topic><topic>Nanostructure</topic><topic>oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>PdNi alloys</topic><topic>PEMFCs</topic><topic>Porosity</topic><topic>porous network</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhenyuan</creatorcontrib><creatorcontrib>Yang, Xiaoyu</creatorcontrib><creatorcontrib>Cui, Lirui</creatorcontrib><creatorcontrib>Shi, Zhaoping</creatorcontrib><creatorcontrib>Lu, Bingqing</creatorcontrib><creatorcontrib>Guo, Xiaomeng</creatorcontrib><creatorcontrib>Zhang, Jubing</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Tang, Yawen</creatorcontrib><creatorcontrib>Xiang, Yan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Particle & particle systems characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhenyuan</au><au>Yang, Xiaoyu</au><au>Cui, Lirui</au><au>Shi, Zhaoping</au><au>Lu, Bingqing</au><au>Guo, Xiaomeng</au><au>Zhang, Jubing</au><au>Xu, Lin</au><au>Tang, Yawen</au><au>Xiang, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Performance Oxygen Reduction Electrocatalysis Enabled by 3D PdNi Nanocorals with Hierarchical Porosity</atitle><jtitle>Particle & particle systems characterization</jtitle><date>2018-05</date><risdate>2018</risdate><volume>35</volume><issue>5</issue><epage>n/a</epage><issn>0934-0866</issn><eissn>1521-4117</eissn><abstract>Cost‐effective electrocatalysts for the oxygen reduction reaction (ORR) play pivotal roles in energy conversion and storage processes. Designing a 3D networked bimetallic nanostructure with hierarchical porosity represents a reliable and effective strategy for the advancement of electrocatalysts with greatly improved activity and stability. However, it still remains a tremendous challenge in fabricating such fantastic nanostructure via a feasible and economical approach. Herein, a facile cyanogel‐bridged synthetic strategy is demonstrated to fabricate PdNi 3D nanocorals with hierarchical porosity. The elaborate integration of electronic and geometric effects endows the as‐fabricated PdNi 3D nanocorals with substantially enhanced activity and durability toward the ORR, as compared with the monometallic counterparts (pure Ni and Pd), PdNi nanoparticles, and commercial Pd black catalyst. More importantly, even after 5000 cycles of accelerated durability tests, the PdNi nanocorals can still maintain well in the catalytic activities, composition, and architectural features. It is believed that the as‐synthesized PdNi nanocorals may hold great promise in practical fuel cells and industrial applications. Furthermore, due to its simplicity and scale‐up production capability, the present cyanogel‐bridged synthetic strategy provides an attractive method for achieving other bi/trimetallic nanoalloys with both structural and compositional advantages for diverse electrochemical applications and beyond.
A facile cyanogel‐bridged synthetic strategy is developed to fabricate PdNi 3D nanocorals with hierarchical porosity. The as‐fabricated porous PdNi 3D nanocorals exhibit much enhanced catalytic activity and stability toward the oxygen reduction reaction due to their unique 3D networked nanostructure with hierarchical porosity and synergistic effect of their alloyed components.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppsc.201700366</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0934-0866 |
ispartof | Particle & particle systems characterization, 2018-05, Vol.35 (5), p.n/a |
issn | 0934-0866 1521-4117 |
language | eng |
recordid | cdi_proquest_journals_2047314117 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Accelerated tests Bimetals Catalysis cyanogel Durability Electrocatalysts Energy conversion Energy storage Fuel cells Industrial applications Nanostructure oxygen reduction reaction Oxygen reduction reactions PdNi alloys PEMFCs Porosity porous network Strategy |
title | High‐Performance Oxygen Reduction Electrocatalysis Enabled by 3D PdNi Nanocorals with Hierarchical Porosity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Performance%20Oxygen%20Reduction%20Electrocatalysis%20Enabled%20by%203D%20PdNi%20Nanocorals%20with%20Hierarchical%20Porosity&rft.jtitle=Particle%20&%20particle%20systems%20characterization&rft.au=Liu,%20Zhenyuan&rft.date=2018-05&rft.volume=35&rft.issue=5&rft.epage=n/a&rft.issn=0934-0866&rft.eissn=1521-4117&rft_id=info:doi/10.1002/ppsc.201700366&rft_dat=%3Cproquest_cross%3E2047314117%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047314117&rft_id=info:pmid/&rfr_iscdi=true |