Families of Parabolas

Explores families of parabolas that result from the graphs of quadratic functions. Computer software allows students to quickly depict a series of graphs and make conjectures about emerging patterns. Discusses cases in different parameters in the quadratic are varied to produce different effects in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Mathematics teacher 1992-09, Vol.85 (6), p.477-479
1. Verfasser: Owens, John E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 479
container_issue 6
container_start_page 477
container_title The Mathematics teacher
container_volume 85
creator Owens, John E.
description Explores families of parabolas that result from the graphs of quadratic functions. Computer software allows students to quickly depict a series of graphs and make conjectures about emerging patterns. Discusses cases in different parameters in the quadratic are varied to produce different effects in which the parabolas. (MDH)
doi_str_mv 10.5951/MT.85.6.0477
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_204727355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ453630</ericid><jstor_id>27967708</jstor_id><sourcerecordid>27967708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1785-52e031354dbe06ce1f7b033796248f08ba5ee7c15cb56919f0f63008bf009e793</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwwQZSBSsJZzvnjxFVLR9qBUOYLSfYUqKUFLsd-O9xFNSNW06699PdvUfIJYUcNdKHdZkrzEUOhZRHZMI4hwxQsWMyAWCYoRT6lJzF2EKqQsGEXC3tpukaF2e9n73bYKu-s_GcnHjbRXfx16fkY7ko58_Z6u3pZf64ymoqVdrHHHDKsfisHIjaUS8r4FxqwQrlQVUWnZM1xbpCoan24AWHNPcA2knNp-R23LsN_ffexZ1p-334SicNSyaY5IgJuvsPooprzbCQA3U_UnXoYwzOm21oNjb8GApmSMesS6PQCDOkk_DrEXehqQ_o4rVAnl5M8s0ot3HXh4POkjUpQfFfGDhlug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204727355</pqid></control><display><type>article</type><title>Families of Parabolas</title><source>Jstor Complete Legacy</source><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Owens, John E.</creator><creatorcontrib>Owens, John E.</creatorcontrib><description>Explores families of parabolas that result from the graphs of quadratic functions. Computer software allows students to quickly depict a series of graphs and make conjectures about emerging patterns. Discusses cases in different parameters in the quadratic are varied to produce different effects in which the parabolas. (MDH)</description><identifier>ISSN: 0025-5769</identifier><identifier>EISSN: 2330-0582</identifier><identifier>DOI: 10.5951/MT.85.6.0477</identifier><identifier>CODEN: MATAAP</identifier><language>eng</language><publisher>Reston: National Council of Teachers of Mathematics</publisher><subject>Coefficients ; Computer Assisted Instruction ; Computers in education ; Courseware ; Curve Sketching ; Discovery Learning ; Discovery Processes ; Fall lines ; Functions (Mathematics) ; Generalization ; Graph theory ; Graphing (Mathematics) ; Graphing Utilities ; Green Globs ; High Schools ; Loci ; Mathematical functions ; Mathematics ; Mathematics Education ; Mathematics Instruction ; Parabolas ; Parametric Analysis ; Patterns in Mathematics ; Plotters ; Quadratic Equations ; Vertices</subject><ispartof>The Mathematics teacher, 1992-09, Vol.85 (6), p.477-479</ispartof><rights>Copyright © 1992 The National Council of Teachers of Mathematics, Inc.</rights><rights>Copyright National Council of Teachers of Mathematics Sep 1992</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1785-52e031354dbe06ce1f7b033796248f08ba5ee7c15cb56919f0f63008bf009e793</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27967708$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27967708$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27846,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ453630$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Owens, John E.</creatorcontrib><title>Families of Parabolas</title><title>The Mathematics teacher</title><description>Explores families of parabolas that result from the graphs of quadratic functions. Computer software allows students to quickly depict a series of graphs and make conjectures about emerging patterns. Discusses cases in different parameters in the quadratic are varied to produce different effects in which the parabolas. (MDH)</description><subject>Coefficients</subject><subject>Computer Assisted Instruction</subject><subject>Computers in education</subject><subject>Courseware</subject><subject>Curve Sketching</subject><subject>Discovery Learning</subject><subject>Discovery Processes</subject><subject>Fall lines</subject><subject>Functions (Mathematics)</subject><subject>Generalization</subject><subject>Graph theory</subject><subject>Graphing (Mathematics)</subject><subject>Graphing Utilities</subject><subject>Green Globs</subject><subject>High Schools</subject><subject>Loci</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics Education</subject><subject>Mathematics Instruction</subject><subject>Parabolas</subject><subject>Parametric Analysis</subject><subject>Patterns in Mathematics</subject><subject>Plotters</subject><subject>Quadratic Equations</subject><subject>Vertices</subject><issn>0025-5769</issn><issn>2330-0582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kL1PwzAQxS0EEqWwwQZSBSsJZzvnjxFVLR9qBUOYLSfYUqKUFLsd-O9xFNSNW06699PdvUfIJYUcNdKHdZkrzEUOhZRHZMI4hwxQsWMyAWCYoRT6lJzF2EKqQsGEXC3tpukaF2e9n73bYKu-s_GcnHjbRXfx16fkY7ko58_Z6u3pZf64ymoqVdrHHHDKsfisHIjaUS8r4FxqwQrlQVUWnZM1xbpCoan24AWHNPcA2knNp-R23LsN_ffexZ1p-334SicNSyaY5IgJuvsPooprzbCQA3U_UnXoYwzOm21oNjb8GApmSMesS6PQCDOkk_DrEXehqQ_o4rVAnl5M8s0ot3HXh4POkjUpQfFfGDhlug</recordid><startdate>19920901</startdate><enddate>19920901</enddate><creator>Owens, John E.</creator><general>National Council of Teachers of Mathematics</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7WH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>8A4</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M0P</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19920901</creationdate><title>Families of Parabolas</title><author>Owens, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1785-52e031354dbe06ce1f7b033796248f08ba5ee7c15cb56919f0f63008bf009e793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Coefficients</topic><topic>Computer Assisted Instruction</topic><topic>Computers in education</topic><topic>Courseware</topic><topic>Curve Sketching</topic><topic>Discovery Learning</topic><topic>Discovery Processes</topic><topic>Fall lines</topic><topic>Functions (Mathematics)</topic><topic>Generalization</topic><topic>Graph theory</topic><topic>Graphing (Mathematics)</topic><topic>Graphing Utilities</topic><topic>Green Globs</topic><topic>High Schools</topic><topic>Loci</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics Education</topic><topic>Mathematics Instruction</topic><topic>Parabolas</topic><topic>Parametric Analysis</topic><topic>Patterns in Mathematics</topic><topic>Plotters</topic><topic>Quadratic Equations</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Owens, John E.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 50</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Education Periodicals</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Education Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>The Mathematics teacher</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Owens, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ453630</ericid><atitle>Families of Parabolas</atitle><jtitle>The Mathematics teacher</jtitle><date>1992-09-01</date><risdate>1992</risdate><volume>85</volume><issue>6</issue><spage>477</spage><epage>479</epage><pages>477-479</pages><issn>0025-5769</issn><eissn>2330-0582</eissn><coden>MATAAP</coden><abstract>Explores families of parabolas that result from the graphs of quadratic functions. Computer software allows students to quickly depict a series of graphs and make conjectures about emerging patterns. Discusses cases in different parameters in the quadratic are varied to produce different effects in which the parabolas. (MDH)</abstract><cop>Reston</cop><pub>National Council of Teachers of Mathematics</pub><doi>10.5951/MT.85.6.0477</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5769
ispartof The Mathematics teacher, 1992-09, Vol.85 (6), p.477-479
issn 0025-5769
2330-0582
language eng
recordid cdi_proquest_journals_204727355
source Jstor Complete Legacy; Periodicals Index Online; JSTOR Mathematics & Statistics
subjects Coefficients
Computer Assisted Instruction
Computers in education
Courseware
Curve Sketching
Discovery Learning
Discovery Processes
Fall lines
Functions (Mathematics)
Generalization
Graph theory
Graphing (Mathematics)
Graphing Utilities
Green Globs
High Schools
Loci
Mathematical functions
Mathematics
Mathematics Education
Mathematics Instruction
Parabolas
Parametric Analysis
Patterns in Mathematics
Plotters
Quadratic Equations
Vertices
title Families of Parabolas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Families%20of%20Parabolas&rft.jtitle=The%20Mathematics%20teacher&rft.au=Owens,%20John%20E.&rft.date=1992-09-01&rft.volume=85&rft.issue=6&rft.spage=477&rft.epage=479&rft.pages=477-479&rft.issn=0025-5769&rft.eissn=2330-0582&rft.coden=MATAAP&rft_id=info:doi/10.5951/MT.85.6.0477&rft_dat=%3Cjstor_proqu%3E27967708%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204727355&rft_id=info:pmid/&rft_ericid=EJ453630&rft_jstor_id=27967708&rfr_iscdi=true