A High-Dimensional Two-Sample Test for Non-Gaussian Data under a Strongly Spiked Eigenvalue Model
In this paper, we discuss two-sample tests for high-dimension, non-Gaussian data. We suppose that two classes have a strongly spiked eigenvalue model. First, we investigate the noise space for high-dimension, non-Gaussian data. A two-sample test is proposed by using the cross-data-matrix (CDM) metho...
Gespeichert in:
Veröffentlicht in: | JOURNAL OF THE JAPAN STATISTICAL SOCIETY 2017/12/28, Vol.47(2), pp.273-291 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 291 |
---|---|
container_issue | 2 |
container_start_page | 273 |
container_title | JOURNAL OF THE JAPAN STATISTICAL SOCIETY |
container_volume | 47 |
creator | Ishii, Aki |
description | In this paper, we discuss two-sample tests for high-dimension, non-Gaussian data. We suppose that two classes have a strongly spiked eigenvalue model. First, we investigate the noise space for high-dimension, non-Gaussian data. A two-sample test is proposed by using the cross-data-matrix (CDM) methodology and its power is derived under some regularity conditions when the dimension is very large. We discuss the validity of assumptions. We check the performance of the proposed two-sample test procedure by simulations. Finally, we demonstrate the proposed two-sample test in actual data analyses. |
doi_str_mv | 10.14490/jjss.47.273 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047266073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047266073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3513-3625aa3e63fa3ecdfd10eef9acdf89ac9fe9ccb6b23d12bf1126374b17c80f1c3</originalsourceid><addsrcrecordid>eNpFkE9PwkAQxRujiYje_ACbeLW4_7otFxODCCaoB_C8Gbaz0Fq6uNtq-PZWMHh585L5zWTmRdE1owMm5ZDelWUIA5kOeCpOoh4TMouVUMlp57OMxzxN5Hl0EUJJqRCJkr0IHsi0WK3jx2KDdShcDRVZfLt4DptthWSBoSHWefLq6ngCbQgF1OQRGiBtnaMnQOaNd_Wq2pH5tvjAnIyLFdZfULVIXlyO1WV0ZqEKePVX-9H703gxmsazt8nz6GEWG5EwEQvFEwCBSthOTW5zRhHtEDqbdTq0ODRmqZZc5IwvLWNciVQuWWoyapkR_ejmsHfr3Wfb3a1L1_run6A5lSlXiqaio24PlPEuBI9Wb32xAb_TjOp9iPo3RC1Tzff4_QEvQwMrPMLgm8JU-M_-DRwbZg1eYy1-AJNYfOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047266073</pqid></control><display><type>article</type><title>A High-Dimensional Two-Sample Test for Non-Gaussian Data under a Strongly Spiked Eigenvalue Model</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ishii, Aki</creator><creatorcontrib>Ishii, Aki</creatorcontrib><description>In this paper, we discuss two-sample tests for high-dimension, non-Gaussian data. We suppose that two classes have a strongly spiked eigenvalue model. First, we investigate the noise space for high-dimension, non-Gaussian data. A two-sample test is proposed by using the cross-data-matrix (CDM) methodology and its power is derived under some regularity conditions when the dimension is very large. We discuss the validity of assumptions. We check the performance of the proposed two-sample test procedure by simulations. Finally, we demonstrate the proposed two-sample test in actual data analyses.</description><identifier>ISSN: 1882-2754</identifier><identifier>EISSN: 1348-6365</identifier><identifier>DOI: 10.14490/jjss.47.273</identifier><language>eng</language><publisher>Tokyo: THE JAPAN STATISTICAL SOCIETY</publisher><subject>Computer simulation ; Cross-data-matrix methodology ; eigenstructure ; HDLSS ; large p ; small n</subject><ispartof>JOURNAL OF THE JAPAN STATISTICAL SOCIETY, 2017/12/28, Vol.47(2), pp.273-291</ispartof><rights>2017 Japan Statistical Society</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3513-3625aa3e63fa3ecdfd10eef9acdf89ac9fe9ccb6b23d12bf1126374b17c80f1c3</citedby><cites>FETCH-LOGICAL-c3513-3625aa3e63fa3ecdfd10eef9acdf89ac9fe9ccb6b23d12bf1126374b17c80f1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>Ishii, Aki</creatorcontrib><title>A High-Dimensional Two-Sample Test for Non-Gaussian Data under a Strongly Spiked Eigenvalue Model</title><title>JOURNAL OF THE JAPAN STATISTICAL SOCIETY</title><addtitle>JOURNAL OF THE JAPAN STATISTICAL SOCIETY</addtitle><description>In this paper, we discuss two-sample tests for high-dimension, non-Gaussian data. We suppose that two classes have a strongly spiked eigenvalue model. First, we investigate the noise space for high-dimension, non-Gaussian data. A two-sample test is proposed by using the cross-data-matrix (CDM) methodology and its power is derived under some regularity conditions when the dimension is very large. We discuss the validity of assumptions. We check the performance of the proposed two-sample test procedure by simulations. Finally, we demonstrate the proposed two-sample test in actual data analyses.</description><subject>Computer simulation</subject><subject>Cross-data-matrix methodology</subject><subject>eigenstructure</subject><subject>HDLSS</subject><subject>large p</subject><subject>small n</subject><issn>1882-2754</issn><issn>1348-6365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFkE9PwkAQxRujiYje_ACbeLW4_7otFxODCCaoB_C8Gbaz0Fq6uNtq-PZWMHh585L5zWTmRdE1owMm5ZDelWUIA5kOeCpOoh4TMouVUMlp57OMxzxN5Hl0EUJJqRCJkr0IHsi0WK3jx2KDdShcDRVZfLt4DptthWSBoSHWefLq6ngCbQgF1OQRGiBtnaMnQOaNd_Wq2pH5tvjAnIyLFdZfULVIXlyO1WV0ZqEKePVX-9H703gxmsazt8nz6GEWG5EwEQvFEwCBSthOTW5zRhHtEDqbdTq0ODRmqZZc5IwvLWNciVQuWWoyapkR_ejmsHfr3Wfb3a1L1_run6A5lSlXiqaio24PlPEuBI9Wb32xAb_TjOp9iPo3RC1Tzff4_QEvQwMrPMLgm8JU-M_-DRwbZg1eYy1-AJNYfOo</recordid><startdate>20171228</startdate><enddate>20171228</enddate><creator>Ishii, Aki</creator><general>THE JAPAN STATISTICAL SOCIETY</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171228</creationdate><title>A High-Dimensional Two-Sample Test for Non-Gaussian Data under a Strongly Spiked Eigenvalue Model</title><author>Ishii, Aki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3513-3625aa3e63fa3ecdfd10eef9acdf89ac9fe9ccb6b23d12bf1126374b17c80f1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Cross-data-matrix methodology</topic><topic>eigenstructure</topic><topic>HDLSS</topic><topic>large p</topic><topic>small n</topic><toplevel>online_resources</toplevel><creatorcontrib>Ishii, Aki</creatorcontrib><collection>CrossRef</collection><jtitle>JOURNAL OF THE JAPAN STATISTICAL SOCIETY</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishii, Aki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Dimensional Two-Sample Test for Non-Gaussian Data under a Strongly Spiked Eigenvalue Model</atitle><jtitle>JOURNAL OF THE JAPAN STATISTICAL SOCIETY</jtitle><addtitle>JOURNAL OF THE JAPAN STATISTICAL SOCIETY</addtitle><date>2017-12-28</date><risdate>2017</risdate><volume>47</volume><issue>2</issue><spage>273</spage><epage>291</epage><pages>273-291</pages><issn>1882-2754</issn><eissn>1348-6365</eissn><abstract>In this paper, we discuss two-sample tests for high-dimension, non-Gaussian data. We suppose that two classes have a strongly spiked eigenvalue model. First, we investigate the noise space for high-dimension, non-Gaussian data. A two-sample test is proposed by using the cross-data-matrix (CDM) methodology and its power is derived under some regularity conditions when the dimension is very large. We discuss the validity of assumptions. We check the performance of the proposed two-sample test procedure by simulations. Finally, we demonstrate the proposed two-sample test in actual data analyses.</abstract><cop>Tokyo</cop><pub>THE JAPAN STATISTICAL SOCIETY</pub><doi>10.14490/jjss.47.273</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1882-2754 |
ispartof | JOURNAL OF THE JAPAN STATISTICAL SOCIETY, 2017/12/28, Vol.47(2), pp.273-291 |
issn | 1882-2754 1348-6365 |
language | eng |
recordid | cdi_proquest_journals_2047266073 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | Computer simulation Cross-data-matrix methodology eigenstructure HDLSS large p small n |
title | A High-Dimensional Two-Sample Test for Non-Gaussian Data under a Strongly Spiked Eigenvalue Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Dimensional%20Two-Sample%20Test%20for%20Non-Gaussian%20Data%20under%20a%20Strongly%20Spiked%20Eigenvalue%20Model&rft.jtitle=JOURNAL%20OF%20THE%20JAPAN%20STATISTICAL%20SOCIETY&rft.au=Ishii,%20Aki&rft.date=2017-12-28&rft.volume=47&rft.issue=2&rft.spage=273&rft.epage=291&rft.pages=273-291&rft.issn=1882-2754&rft.eissn=1348-6365&rft_id=info:doi/10.14490/jjss.47.273&rft_dat=%3Cproquest_cross%3E2047266073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047266073&rft_id=info:pmid/&rfr_iscdi=true |