LEARNING STUDENT APPROACHES ALGEBRAIC PROOFS

In algebraic proof, analysis of student written work on tasks that demand generalization and explanation may yield insights into student use and understanding of justification and proof in algebra. These insights, in turn, may enable mathematics educators to develop instruction that supports and cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Mathematics teacher 2010-03, Vol.103 (7), p.489-495
Hauptverfasser: D'Ambrosio, Beatriz S., Kastberg, Signe E., dos Santos, João Ricardo Viola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 495
container_issue 7
container_start_page 489
container_title The Mathematics teacher
container_volume 103
creator D'Ambrosio, Beatriz S.
Kastberg, Signe E.
dos Santos, João Ricardo Viola
description In algebraic proof, analysis of student written work on tasks that demand generalization and explanation may yield insights into student use and understanding of justification and proof in algebra. These insights, in turn, may enable mathematics educators to develop instruction that supports and challenges student reasoning. D'Ambrosio et al explore student work in an effort to analyze how students respond to a task that requests an explanation of why a numerical pattern is always true.
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_204720424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20876677</jstor_id><sourcerecordid>20876677</sourcerecordid><originalsourceid>FETCH-LOGICAL-j494-299915443ee985fa50283a5801c36f8f652891c8e8140bda13fa91800ce6e9ad3</originalsourceid><addsrcrecordid>eNotjV1LhEAYhYcoyLZ-QiBdJ7zz_c7lZK4riC5q1zK5IySVm-5e9O8b2A4cDhwezrkiEeMcEpDIrkkEwGQitTK35G5dJwgSCBF5LjPbVEWVx2339ppVXWz3-6a26S5rY1vm2UtjizQOVb1t78nN6D5X__CfG9Jtsy7dJWWdF6ktk0kYkTBjDJVCcO8NytFJYMidRKADVyOOSjI0dECPVMD7wVE-OkMRYPDKG3fgG_J0mT0u88_Zr6d-ms_Ld3jsGQgdzESAHi_QtJ7mpT8uH19u-Q0AaqW05n-mU0Jo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204720424</pqid></control><display><type>article</type><title>LEARNING STUDENT APPROACHES ALGEBRAIC PROOFS</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>D'Ambrosio, Beatriz S. ; Kastberg, Signe E. ; dos Santos, João Ricardo Viola</creator><creatorcontrib>D'Ambrosio, Beatriz S. ; Kastberg, Signe E. ; dos Santos, João Ricardo Viola</creatorcontrib><description>In algebraic proof, analysis of student written work on tasks that demand generalization and explanation may yield insights into student use and understanding of justification and proof in algebra. These insights, in turn, may enable mathematics educators to develop instruction that supports and challenges student reasoning. D'Ambrosio et al explore student work in an effort to analyze how students respond to a task that requests an explanation of why a numerical pattern is always true.</description><identifier>ISSN: 0025-5769</identifier><identifier>EISSN: 2330-0582</identifier><identifier>CODEN: MATAAP</identifier><language>eng</language><publisher>Reston: National Council of Teachers of Mathematics</publisher><subject>Algebra ; Algorithms ; Analysis ; Binomials ; High school students ; Mathematical expressions ; Mathematical problems ; Mathematics education ; Mathematics teachers ; Numbers ; Squares ; Students ; Teachers</subject><ispartof>The Mathematics teacher, 2010-03, Vol.103 (7), p.489-495</ispartof><rights>2010 The National Council of Teachers of Mathematics, Inc.</rights><rights>Copyright National Council of Teachers of Mathematics Mar 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20876677$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20876677$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>D'Ambrosio, Beatriz S.</creatorcontrib><creatorcontrib>Kastberg, Signe E.</creatorcontrib><creatorcontrib>dos Santos, João Ricardo Viola</creatorcontrib><title>LEARNING STUDENT APPROACHES ALGEBRAIC PROOFS</title><title>The Mathematics teacher</title><description>In algebraic proof, analysis of student written work on tasks that demand generalization and explanation may yield insights into student use and understanding of justification and proof in algebra. These insights, in turn, may enable mathematics educators to develop instruction that supports and challenges student reasoning. D'Ambrosio et al explore student work in an effort to analyze how students respond to a task that requests an explanation of why a numerical pattern is always true.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Binomials</subject><subject>High school students</subject><subject>Mathematical expressions</subject><subject>Mathematical problems</subject><subject>Mathematics education</subject><subject>Mathematics teachers</subject><subject>Numbers</subject><subject>Squares</subject><subject>Students</subject><subject>Teachers</subject><issn>0025-5769</issn><issn>2330-0582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotjV1LhEAYhYcoyLZ-QiBdJ7zz_c7lZK4riC5q1zK5IySVm-5e9O8b2A4cDhwezrkiEeMcEpDIrkkEwGQitTK35G5dJwgSCBF5LjPbVEWVx2339ppVXWz3-6a26S5rY1vm2UtjizQOVb1t78nN6D5X__CfG9Jtsy7dJWWdF6ktk0kYkTBjDJVCcO8NytFJYMidRKADVyOOSjI0dECPVMD7wVE-OkMRYPDKG3fgG_J0mT0u88_Zr6d-ms_Ld3jsGQgdzESAHi_QtJ7mpT8uH19u-Q0AaqW05n-mU0Jo</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>D'Ambrosio, Beatriz S.</creator><creator>Kastberg, Signe E.</creator><creator>dos Santos, João Ricardo Viola</creator><general>National Council of Teachers of Mathematics</general><scope>JQ2</scope></search><sort><creationdate>20100301</creationdate><title>LEARNING STUDENT APPROACHES ALGEBRAIC PROOFS</title><author>D'Ambrosio, Beatriz S. ; Kastberg, Signe E. ; dos Santos, João Ricardo Viola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j494-299915443ee985fa50283a5801c36f8f652891c8e8140bda13fa91800ce6e9ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Binomials</topic><topic>High school students</topic><topic>Mathematical expressions</topic><topic>Mathematical problems</topic><topic>Mathematics education</topic><topic>Mathematics teachers</topic><topic>Numbers</topic><topic>Squares</topic><topic>Students</topic><topic>Teachers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D'Ambrosio, Beatriz S.</creatorcontrib><creatorcontrib>Kastberg, Signe E.</creatorcontrib><creatorcontrib>dos Santos, João Ricardo Viola</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>The Mathematics teacher</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'Ambrosio, Beatriz S.</au><au>Kastberg, Signe E.</au><au>dos Santos, João Ricardo Viola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LEARNING STUDENT APPROACHES ALGEBRAIC PROOFS</atitle><jtitle>The Mathematics teacher</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>103</volume><issue>7</issue><spage>489</spage><epage>495</epage><pages>489-495</pages><issn>0025-5769</issn><eissn>2330-0582</eissn><coden>MATAAP</coden><abstract>In algebraic proof, analysis of student written work on tasks that demand generalization and explanation may yield insights into student use and understanding of justification and proof in algebra. These insights, in turn, may enable mathematics educators to develop instruction that supports and challenges student reasoning. D'Ambrosio et al explore student work in an effort to analyze how students respond to a task that requests an explanation of why a numerical pattern is always true.</abstract><cop>Reston</cop><pub>National Council of Teachers of Mathematics</pub><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5769
ispartof The Mathematics teacher, 2010-03, Vol.103 (7), p.489-495
issn 0025-5769
2330-0582
language eng
recordid cdi_proquest_journals_204720424
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Algebra
Algorithms
Analysis
Binomials
High school students
Mathematical expressions
Mathematical problems
Mathematics education
Mathematics teachers
Numbers
Squares
Students
Teachers
title LEARNING STUDENT APPROACHES ALGEBRAIC PROOFS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A32%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LEARNING%20STUDENT%20APPROACHES%20ALGEBRAIC%20PROOFS&rft.jtitle=The%20Mathematics%20teacher&rft.au=D'Ambrosio,%20Beatriz%20S.&rft.date=2010-03-01&rft.volume=103&rft.issue=7&rft.spage=489&rft.epage=495&rft.pages=489-495&rft.issn=0025-5769&rft.eissn=2330-0582&rft.coden=MATAAP&rft_id=info:doi/&rft_dat=%3Cjstor_proqu%3E20876677%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204720424&rft_id=info:pmid/&rft_jstor_id=20876677&rfr_iscdi=true