LEARNING STUDENT APPROACHES ALGEBRAIC PROOFS
In algebraic proof, analysis of student written work on tasks that demand generalization and explanation may yield insights into student use and understanding of justification and proof in algebra. These insights, in turn, may enable mathematics educators to develop instruction that supports and cha...
Gespeichert in:
Veröffentlicht in: | The Mathematics teacher 2010-03, Vol.103 (7), p.489-495 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 495 |
---|---|
container_issue | 7 |
container_start_page | 489 |
container_title | The Mathematics teacher |
container_volume | 103 |
creator | D'Ambrosio, Beatriz S. Kastberg, Signe E. dos Santos, João Ricardo Viola |
description | In algebraic proof, analysis of student written work on tasks that demand generalization and explanation may yield insights into student use and understanding of justification and proof in algebra. These insights, in turn, may enable mathematics educators to develop instruction that supports and challenges student reasoning. D'Ambrosio et al explore student work in an effort to analyze how students respond to a task that requests an explanation of why a numerical pattern is always true. |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_204720424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20876677</jstor_id><sourcerecordid>20876677</sourcerecordid><originalsourceid>FETCH-LOGICAL-j494-299915443ee985fa50283a5801c36f8f652891c8e8140bda13fa91800ce6e9ad3</originalsourceid><addsrcrecordid>eNotjV1LhEAYhYcoyLZ-QiBdJ7zz_c7lZK4riC5q1zK5IySVm-5e9O8b2A4cDhwezrkiEeMcEpDIrkkEwGQitTK35G5dJwgSCBF5LjPbVEWVx2339ppVXWz3-6a26S5rY1vm2UtjizQOVb1t78nN6D5X__CfG9Jtsy7dJWWdF6ktk0kYkTBjDJVCcO8NytFJYMidRKADVyOOSjI0dECPVMD7wVE-OkMRYPDKG3fgG_J0mT0u88_Zr6d-ms_Ld3jsGQgdzESAHi_QtJ7mpT8uH19u-Q0AaqW05n-mU0Jo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204720424</pqid></control><display><type>article</type><title>LEARNING STUDENT APPROACHES ALGEBRAIC PROOFS</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>D'Ambrosio, Beatriz S. ; Kastberg, Signe E. ; dos Santos, João Ricardo Viola</creator><creatorcontrib>D'Ambrosio, Beatriz S. ; Kastberg, Signe E. ; dos Santos, João Ricardo Viola</creatorcontrib><description>In algebraic proof, analysis of student written work on tasks that demand generalization and explanation may yield insights into student use and understanding of justification and proof in algebra. These insights, in turn, may enable mathematics educators to develop instruction that supports and challenges student reasoning. D'Ambrosio et al explore student work in an effort to analyze how students respond to a task that requests an explanation of why a numerical pattern is always true.</description><identifier>ISSN: 0025-5769</identifier><identifier>EISSN: 2330-0582</identifier><identifier>CODEN: MATAAP</identifier><language>eng</language><publisher>Reston: National Council of Teachers of Mathematics</publisher><subject>Algebra ; Algorithms ; Analysis ; Binomials ; High school students ; Mathematical expressions ; Mathematical problems ; Mathematics education ; Mathematics teachers ; Numbers ; Squares ; Students ; Teachers</subject><ispartof>The Mathematics teacher, 2010-03, Vol.103 (7), p.489-495</ispartof><rights>2010 The National Council of Teachers of Mathematics, Inc.</rights><rights>Copyright National Council of Teachers of Mathematics Mar 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20876677$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20876677$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>D'Ambrosio, Beatriz S.</creatorcontrib><creatorcontrib>Kastberg, Signe E.</creatorcontrib><creatorcontrib>dos Santos, João Ricardo Viola</creatorcontrib><title>LEARNING STUDENT APPROACHES ALGEBRAIC PROOFS</title><title>The Mathematics teacher</title><description>In algebraic proof, analysis of student written work on tasks that demand generalization and explanation may yield insights into student use and understanding of justification and proof in algebra. These insights, in turn, may enable mathematics educators to develop instruction that supports and challenges student reasoning. D'Ambrosio et al explore student work in an effort to analyze how students respond to a task that requests an explanation of why a numerical pattern is always true.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Binomials</subject><subject>High school students</subject><subject>Mathematical expressions</subject><subject>Mathematical problems</subject><subject>Mathematics education</subject><subject>Mathematics teachers</subject><subject>Numbers</subject><subject>Squares</subject><subject>Students</subject><subject>Teachers</subject><issn>0025-5769</issn><issn>2330-0582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotjV1LhEAYhYcoyLZ-QiBdJ7zz_c7lZK4riC5q1zK5IySVm-5e9O8b2A4cDhwezrkiEeMcEpDIrkkEwGQitTK35G5dJwgSCBF5LjPbVEWVx2339ppVXWz3-6a26S5rY1vm2UtjizQOVb1t78nN6D5X__CfG9Jtsy7dJWWdF6ktk0kYkTBjDJVCcO8NytFJYMidRKADVyOOSjI0dECPVMD7wVE-OkMRYPDKG3fgG_J0mT0u88_Zr6d-ms_Ld3jsGQgdzESAHi_QtJ7mpT8uH19u-Q0AaqW05n-mU0Jo</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>D'Ambrosio, Beatriz S.</creator><creator>Kastberg, Signe E.</creator><creator>dos Santos, João Ricardo Viola</creator><general>National Council of Teachers of Mathematics</general><scope>JQ2</scope></search><sort><creationdate>20100301</creationdate><title>LEARNING STUDENT APPROACHES ALGEBRAIC PROOFS</title><author>D'Ambrosio, Beatriz S. ; Kastberg, Signe E. ; dos Santos, João Ricardo Viola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j494-299915443ee985fa50283a5801c36f8f652891c8e8140bda13fa91800ce6e9ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Binomials</topic><topic>High school students</topic><topic>Mathematical expressions</topic><topic>Mathematical problems</topic><topic>Mathematics education</topic><topic>Mathematics teachers</topic><topic>Numbers</topic><topic>Squares</topic><topic>Students</topic><topic>Teachers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D'Ambrosio, Beatriz S.</creatorcontrib><creatorcontrib>Kastberg, Signe E.</creatorcontrib><creatorcontrib>dos Santos, João Ricardo Viola</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>The Mathematics teacher</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'Ambrosio, Beatriz S.</au><au>Kastberg, Signe E.</au><au>dos Santos, João Ricardo Viola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LEARNING STUDENT APPROACHES ALGEBRAIC PROOFS</atitle><jtitle>The Mathematics teacher</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>103</volume><issue>7</issue><spage>489</spage><epage>495</epage><pages>489-495</pages><issn>0025-5769</issn><eissn>2330-0582</eissn><coden>MATAAP</coden><abstract>In algebraic proof, analysis of student written work on tasks that demand generalization and explanation may yield insights into student use and understanding of justification and proof in algebra. These insights, in turn, may enable mathematics educators to develop instruction that supports and challenges student reasoning. D'Ambrosio et al explore student work in an effort to analyze how students respond to a task that requests an explanation of why a numerical pattern is always true.</abstract><cop>Reston</cop><pub>National Council of Teachers of Mathematics</pub><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5769 |
ispartof | The Mathematics teacher, 2010-03, Vol.103 (7), p.489-495 |
issn | 0025-5769 2330-0582 |
language | eng |
recordid | cdi_proquest_journals_204720424 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Algebra Algorithms Analysis Binomials High school students Mathematical expressions Mathematical problems Mathematics education Mathematics teachers Numbers Squares Students Teachers |
title | LEARNING STUDENT APPROACHES ALGEBRAIC PROOFS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A32%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LEARNING%20STUDENT%20APPROACHES%20ALGEBRAIC%20PROOFS&rft.jtitle=The%20Mathematics%20teacher&rft.au=D'Ambrosio,%20Beatriz%20S.&rft.date=2010-03-01&rft.volume=103&rft.issue=7&rft.spage=489&rft.epage=495&rft.pages=489-495&rft.issn=0025-5769&rft.eissn=2330-0582&rft.coden=MATAAP&rft_id=info:doi/&rft_dat=%3Cjstor_proqu%3E20876677%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204720424&rft_id=info:pmid/&rft_jstor_id=20876677&rfr_iscdi=true |