Investigating the Mathematical Process with Nonlinear Asymptotes
Under the backdrop of the investigation of rational functions and their respective curved asymptotes, the reader is invited to experience the mathematical process alongside the authors and observe the application of the NCTM Process Standards and the use of multiple representations in the investigat...
Gespeichert in:
Veröffentlicht in: | The Mathematics teacher 2008-04, Vol.101 (8), p.574-580 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 580 |
---|---|
container_issue | 8 |
container_start_page | 574 |
container_title | The Mathematics teacher |
container_volume | 101 |
creator | Bossé, Michael J. DeUrquidi, Karen A. Edwards, David L. Nandakumar, N. R. |
description | Under the backdrop of the investigation of rational functions and their respective curved asymptotes, the reader is invited to experience the mathematical process alongside the authors and observe the application of the NCTM Process Standards and the use of multiple representations in the investigation and solution of a problem. (Contains 9 figures and 7 resources.) |
doi_str_mv | 10.5951/MT.101.8.0574 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_204716473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ789423</ericid><jstor_id>20876216</jstor_id><sourcerecordid>20876216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1083-e4a130e5b7f06d7f052957765e6c03ae2186d4f59beb8bfe31d802d09bfa516d3</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExE9etOk8d46-729SQgqBtQDnjfbdgsl0OLuouHfu6SGOcxH3iczkxehWwwZzzl-nC8yDDhTGXDJztCAUAopcEXO0QCA8JRLkV-iK-_XEIMpGKCnaftjfWiWJjTtMgkrm8xNzNs4l2aTfLqutN4nv01YJe9du2laa1wy8oftLnTB-mt0UZuNtzf_dYi-nieL8Ws6-3iZjkeztMSgaGqZwRQsL2QNooqJk5xLKbgVJVBjCVaiYjXPC1uoorYUVwpIBXlRG45FRYfood-7c933Pr6s193etfGkJsAkFkzSCKU9VLrOe2drvXPN1riDxqCPHun5IrZYK330KPJ3PW9dU57YyZtUOSPHdfe9vPahcyedgJKCYEH_AAnba_c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204716473</pqid></control><display><type>article</type><title>Investigating the Mathematical Process with Nonlinear Asymptotes</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Bossé, Michael J. ; DeUrquidi, Karen A. ; Edwards, David L. ; Nandakumar, N. R.</creator><creatorcontrib>Bossé, Michael J. ; DeUrquidi, Karen A. ; Edwards, David L. ; Nandakumar, N. R.</creatorcontrib><description>Under the backdrop of the investigation of rational functions and their respective curved asymptotes, the reader is invited to experience the mathematical process alongside the authors and observe the application of the NCTM Process Standards and the use of multiple representations in the investigation and solution of a problem. (Contains 9 figures and 7 resources.)</description><identifier>ISSN: 0025-5769</identifier><identifier>EISSN: 2330-0582</identifier><identifier>DOI: 10.5951/MT.101.8.0574</identifier><identifier>CODEN: MATAAP</identifier><language>eng</language><publisher>Reston: National Council of Teachers of Mathematics</publisher><subject>Algebra ; Asymptotes ; Asymptotic value ; Calculus ; College Mathematics ; Equations (Mathematics) ; Graph theory ; Graphs ; Mathematical Concepts ; Mathematical functions ; Mathematical problems ; Mathematics education ; Mathematics Instruction ; Mathematics teachers ; Polynomials ; Problem Solving ; Rational functions ; Secondary School Mathematics ; Vertical asymptotes</subject><ispartof>The Mathematics teacher, 2008-04, Vol.101 (8), p.574-580</ispartof><rights>2008 The National Council of Teachers of Mathematics, Inc.</rights><rights>Copyright National Council of Teachers of Mathematics Apr 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20876216$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20876216$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ789423$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Bossé, Michael J.</creatorcontrib><creatorcontrib>DeUrquidi, Karen A.</creatorcontrib><creatorcontrib>Edwards, David L.</creatorcontrib><creatorcontrib>Nandakumar, N. R.</creatorcontrib><title>Investigating the Mathematical Process with Nonlinear Asymptotes</title><title>The Mathematics teacher</title><description>Under the backdrop of the investigation of rational functions and their respective curved asymptotes, the reader is invited to experience the mathematical process alongside the authors and observe the application of the NCTM Process Standards and the use of multiple representations in the investigation and solution of a problem. (Contains 9 figures and 7 resources.)</description><subject>Algebra</subject><subject>Asymptotes</subject><subject>Asymptotic value</subject><subject>Calculus</subject><subject>College Mathematics</subject><subject>Equations (Mathematics)</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematical Concepts</subject><subject>Mathematical functions</subject><subject>Mathematical problems</subject><subject>Mathematics education</subject><subject>Mathematics Instruction</subject><subject>Mathematics teachers</subject><subject>Polynomials</subject><subject>Problem Solving</subject><subject>Rational functions</subject><subject>Secondary School Mathematics</subject><subject>Vertical asymptotes</subject><issn>0025-5769</issn><issn>2330-0582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwkAQhjdGExE9etOk8d46-729SQgqBtQDnjfbdgsl0OLuouHfu6SGOcxH3iczkxehWwwZzzl-nC8yDDhTGXDJztCAUAopcEXO0QCA8JRLkV-iK-_XEIMpGKCnaftjfWiWJjTtMgkrm8xNzNs4l2aTfLqutN4nv01YJe9du2laa1wy8oftLnTB-mt0UZuNtzf_dYi-nieL8Ws6-3iZjkeztMSgaGqZwRQsL2QNooqJk5xLKbgVJVBjCVaiYjXPC1uoorYUVwpIBXlRG45FRYfood-7c933Pr6s193etfGkJsAkFkzSCKU9VLrOe2drvXPN1riDxqCPHun5IrZYK330KPJ3PW9dU57YyZtUOSPHdfe9vPahcyedgJKCYEH_AAnba_c</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Bossé, Michael J.</creator><creator>DeUrquidi, Karen A.</creator><creator>Edwards, David L.</creator><creator>Nandakumar, N. R.</creator><general>National Council of Teachers of Mathematics</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20080401</creationdate><title>Investigating the Mathematical Process with Nonlinear Asymptotes</title><author>Bossé, Michael J. ; DeUrquidi, Karen A. ; Edwards, David L. ; Nandakumar, N. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1083-e4a130e5b7f06d7f052957765e6c03ae2186d4f59beb8bfe31d802d09bfa516d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Asymptotes</topic><topic>Asymptotic value</topic><topic>Calculus</topic><topic>College Mathematics</topic><topic>Equations (Mathematics)</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematical Concepts</topic><topic>Mathematical functions</topic><topic>Mathematical problems</topic><topic>Mathematics education</topic><topic>Mathematics Instruction</topic><topic>Mathematics teachers</topic><topic>Polynomials</topic><topic>Problem Solving</topic><topic>Rational functions</topic><topic>Secondary School Mathematics</topic><topic>Vertical asymptotes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bossé, Michael J.</creatorcontrib><creatorcontrib>DeUrquidi, Karen A.</creatorcontrib><creatorcontrib>Edwards, David L.</creatorcontrib><creatorcontrib>Nandakumar, N. R.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Mathematics teacher</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bossé, Michael J.</au><au>DeUrquidi, Karen A.</au><au>Edwards, David L.</au><au>Nandakumar, N. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ789423</ericid><atitle>Investigating the Mathematical Process with Nonlinear Asymptotes</atitle><jtitle>The Mathematics teacher</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>101</volume><issue>8</issue><spage>574</spage><epage>580</epage><pages>574-580</pages><issn>0025-5769</issn><eissn>2330-0582</eissn><coden>MATAAP</coden><abstract>Under the backdrop of the investigation of rational functions and their respective curved asymptotes, the reader is invited to experience the mathematical process alongside the authors and observe the application of the NCTM Process Standards and the use of multiple representations in the investigation and solution of a problem. (Contains 9 figures and 7 resources.)</abstract><cop>Reston</cop><pub>National Council of Teachers of Mathematics</pub><doi>10.5951/MT.101.8.0574</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5769 |
ispartof | The Mathematics teacher, 2008-04, Vol.101 (8), p.574-580 |
issn | 0025-5769 2330-0582 |
language | eng |
recordid | cdi_proquest_journals_204716473 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Algebra Asymptotes Asymptotic value Calculus College Mathematics Equations (Mathematics) Graph theory Graphs Mathematical Concepts Mathematical functions Mathematical problems Mathematics education Mathematics Instruction Mathematics teachers Polynomials Problem Solving Rational functions Secondary School Mathematics Vertical asymptotes |
title | Investigating the Mathematical Process with Nonlinear Asymptotes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20Mathematical%20Process%20with%20Nonlinear%20Asymptotes&rft.jtitle=The%20Mathematics%20teacher&rft.au=Boss%C3%A9,%20Michael%20J.&rft.date=2008-04-01&rft.volume=101&rft.issue=8&rft.spage=574&rft.epage=580&rft.pages=574-580&rft.issn=0025-5769&rft.eissn=2330-0582&rft.coden=MATAAP&rft_id=info:doi/10.5951/MT.101.8.0574&rft_dat=%3Cjstor_proqu%3E20876216%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204716473&rft_id=info:pmid/&rft_ericid=EJ789423&rft_jstor_id=20876216&rfr_iscdi=true |