Optimal inventory control with sequential online auction in agriculture supply chain: an agent-based simulation optimisation approach

With the development of e-commerce, in agriculture supply chain, online auction is adopted as an inventory clearing tool. Comparing to mathematical models studying inventory control over online sequential auctions, our agent-based simulation model could systematically describe the complexities of bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2018-03, Vol.56 (6), p.2322-2338
Hauptverfasser: Huang, Jingsi, Song, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2338
container_issue 6
container_start_page 2322
container_title International journal of production research
container_volume 56
creator Huang, Jingsi
Song, Jie
description With the development of e-commerce, in agriculture supply chain, online auction is adopted as an inventory clearing tool. Comparing to mathematical models studying inventory control over online sequential auctions, our agent-based simulation model could systematically describe the complexities of bidders' information interactions and behaviour preferences caused from financial and production perspectives, and by other supply chain members. In addition, we take into account the complex and dynamic market environment, which will impact the operation effect of auction policies. With identical auction items, the profit-maximising firm must decide auction lot-size, which is the number of units in each auction, minimum initial bid, and the time interval between auctions. To obtain the optimal solution, nested partitions framework and optimal expected opportunity cost algorithm are integrated to improve computation accuracy and efficiency. A case study based on real data is conducted to implement and validate the proposed approach. Furthermore, based on the model, the paper studies the sensitivities of the decision variables under different supply and demand scenarios.
doi_str_mv 10.1080/00207543.2017.1373203
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047148929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047148929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-8a295155c6630a3e9ccfd06127a507ac2001b998c77c4d346faa43c0edc14af73</originalsourceid><addsrcrecordid>eNo1kF1LwzAUhoMoOKc_QQh43XmStE3rnQy_YLAbBe_CWZa6jK6pSarsB_i_Td3MTUjyvOclDyHXDGYMKrgF4CCLXMw4MDljQgoO4oRMmCjLrKiq91MyGZlshM7JRQhbSKuo8gn5WfbR7rCltvsyXXR-T7Xronct_bZxQ4P5HNK9TYTrWtsZioOO1nUpQPHDWz20cfCGhqHv2xTeoO3uKI6PKZetMJg1DXY3tPgXc2OfDYcD9r13qDeX5KzBNpir4z4lb48Pr_PnbLF8epnfLzItmIhZhbwuWFHoshSAwtRaN2soGZdYgETNAdiqristpc7XIi8bxFxoMGvNcmykmJKbw9xUm_4Votq6wXepUnHIJcurmteJKg6U9i4EbxrV--TI7xUDNRpX_8bVaFwdjYtfci13CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047148929</pqid></control><display><type>article</type><title>Optimal inventory control with sequential online auction in agriculture supply chain: an agent-based simulation optimisation approach</title><source>Taylor &amp; Francis Journals Complete</source><source>EBSCOhost Business Source Complete</source><creator>Huang, Jingsi ; Song, Jie</creator><creatorcontrib>Huang, Jingsi ; Song, Jie</creatorcontrib><description>With the development of e-commerce, in agriculture supply chain, online auction is adopted as an inventory clearing tool. Comparing to mathematical models studying inventory control over online sequential auctions, our agent-based simulation model could systematically describe the complexities of bidders' information interactions and behaviour preferences caused from financial and production perspectives, and by other supply chain members. In addition, we take into account the complex and dynamic market environment, which will impact the operation effect of auction policies. With identical auction items, the profit-maximising firm must decide auction lot-size, which is the number of units in each auction, minimum initial bid, and the time interval between auctions. To obtain the optimal solution, nested partitions framework and optimal expected opportunity cost algorithm are integrated to improve computation accuracy and efficiency. A case study based on real data is conducted to implement and validate the proposed approach. Furthermore, based on the model, the paper studies the sensitivities of the decision variables under different supply and demand scenarios.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2017.1373203</identifier><language>eng</language><publisher>London: Taylor &amp; Francis LLC</publisher><subject>Agent-based models ; Agriculture ; Auctioning ; Auctions ; Computer simulation ; Computing time ; Environmental impact ; Inventory control ; Optimization ; Supply &amp; demand ; Supply chains</subject><ispartof>International journal of production research, 2018-03, Vol.56 (6), p.2322-2338</ispartof><rights>2017 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-8a295155c6630a3e9ccfd06127a507ac2001b998c77c4d346faa43c0edc14af73</citedby><cites>FETCH-LOGICAL-c313t-8a295155c6630a3e9ccfd06127a507ac2001b998c77c4d346faa43c0edc14af73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Jingsi</creatorcontrib><creatorcontrib>Song, Jie</creatorcontrib><title>Optimal inventory control with sequential online auction in agriculture supply chain: an agent-based simulation optimisation approach</title><title>International journal of production research</title><description>With the development of e-commerce, in agriculture supply chain, online auction is adopted as an inventory clearing tool. Comparing to mathematical models studying inventory control over online sequential auctions, our agent-based simulation model could systematically describe the complexities of bidders' information interactions and behaviour preferences caused from financial and production perspectives, and by other supply chain members. In addition, we take into account the complex and dynamic market environment, which will impact the operation effect of auction policies. With identical auction items, the profit-maximising firm must decide auction lot-size, which is the number of units in each auction, minimum initial bid, and the time interval between auctions. To obtain the optimal solution, nested partitions framework and optimal expected opportunity cost algorithm are integrated to improve computation accuracy and efficiency. A case study based on real data is conducted to implement and validate the proposed approach. Furthermore, based on the model, the paper studies the sensitivities of the decision variables under different supply and demand scenarios.</description><subject>Agent-based models</subject><subject>Agriculture</subject><subject>Auctioning</subject><subject>Auctions</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Environmental impact</subject><subject>Inventory control</subject><subject>Optimization</subject><subject>Supply &amp; demand</subject><subject>Supply chains</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo1kF1LwzAUhoMoOKc_QQh43XmStE3rnQy_YLAbBe_CWZa6jK6pSarsB_i_Td3MTUjyvOclDyHXDGYMKrgF4CCLXMw4MDljQgoO4oRMmCjLrKiq91MyGZlshM7JRQhbSKuo8gn5WfbR7rCltvsyXXR-T7Xronct_bZxQ4P5HNK9TYTrWtsZioOO1nUpQPHDWz20cfCGhqHv2xTeoO3uKI6PKZetMJg1DXY3tPgXc2OfDYcD9r13qDeX5KzBNpir4z4lb48Pr_PnbLF8epnfLzItmIhZhbwuWFHoshSAwtRaN2soGZdYgETNAdiqristpc7XIi8bxFxoMGvNcmykmJKbw9xUm_4Votq6wXepUnHIJcurmteJKg6U9i4EbxrV--TI7xUDNRpX_8bVaFwdjYtfci13CQ</recordid><startdate>20180319</startdate><enddate>20180319</enddate><creator>Huang, Jingsi</creator><creator>Song, Jie</creator><general>Taylor &amp; Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180319</creationdate><title>Optimal inventory control with sequential online auction in agriculture supply chain: an agent-based simulation optimisation approach</title><author>Huang, Jingsi ; Song, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-8a295155c6630a3e9ccfd06127a507ac2001b998c77c4d346faa43c0edc14af73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agent-based models</topic><topic>Agriculture</topic><topic>Auctioning</topic><topic>Auctions</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Environmental impact</topic><topic>Inventory control</topic><topic>Optimization</topic><topic>Supply &amp; demand</topic><topic>Supply chains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jingsi</creatorcontrib><creatorcontrib>Song, Jie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jingsi</au><au>Song, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal inventory control with sequential online auction in agriculture supply chain: an agent-based simulation optimisation approach</atitle><jtitle>International journal of production research</jtitle><date>2018-03-19</date><risdate>2018</risdate><volume>56</volume><issue>6</issue><spage>2322</spage><epage>2338</epage><pages>2322-2338</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>With the development of e-commerce, in agriculture supply chain, online auction is adopted as an inventory clearing tool. Comparing to mathematical models studying inventory control over online sequential auctions, our agent-based simulation model could systematically describe the complexities of bidders' information interactions and behaviour preferences caused from financial and production perspectives, and by other supply chain members. In addition, we take into account the complex and dynamic market environment, which will impact the operation effect of auction policies. With identical auction items, the profit-maximising firm must decide auction lot-size, which is the number of units in each auction, minimum initial bid, and the time interval between auctions. To obtain the optimal solution, nested partitions framework and optimal expected opportunity cost algorithm are integrated to improve computation accuracy and efficiency. A case study based on real data is conducted to implement and validate the proposed approach. Furthermore, based on the model, the paper studies the sensitivities of the decision variables under different supply and demand scenarios.</abstract><cop>London</cop><pub>Taylor &amp; Francis LLC</pub><doi>10.1080/00207543.2017.1373203</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2018-03, Vol.56 (6), p.2322-2338
issn 0020-7543
1366-588X
language eng
recordid cdi_proquest_journals_2047148929
source Taylor & Francis Journals Complete; EBSCOhost Business Source Complete
subjects Agent-based models
Agriculture
Auctioning
Auctions
Computer simulation
Computing time
Environmental impact
Inventory control
Optimization
Supply & demand
Supply chains
title Optimal inventory control with sequential online auction in agriculture supply chain: an agent-based simulation optimisation approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20inventory%20control%20with%20sequential%20online%20auction%20in%20agriculture%20supply%20chain:%20an%20agent-based%20simulation%20optimisation%20approach&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Huang,%20Jingsi&rft.date=2018-03-19&rft.volume=56&rft.issue=6&rft.spage=2322&rft.epage=2338&rft.pages=2322-2338&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2017.1373203&rft_dat=%3Cproquest_cross%3E2047148929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047148929&rft_id=info:pmid/&rfr_iscdi=true