Optimal inventory control with sequential online auction in agriculture supply chain: an agent-based simulation optimisation approach
With the development of e-commerce, in agriculture supply chain, online auction is adopted as an inventory clearing tool. Comparing to mathematical models studying inventory control over online sequential auctions, our agent-based simulation model could systematically describe the complexities of bi...
Gespeichert in:
Veröffentlicht in: | International journal of production research 2018-03, Vol.56 (6), p.2322-2338 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2338 |
---|---|
container_issue | 6 |
container_start_page | 2322 |
container_title | International journal of production research |
container_volume | 56 |
creator | Huang, Jingsi Song, Jie |
description | With the development of e-commerce, in agriculture supply chain, online auction is adopted as an inventory clearing tool. Comparing to mathematical models studying inventory control over online sequential auctions, our agent-based simulation model could systematically describe the complexities of bidders' information interactions and behaviour preferences caused from financial and production perspectives, and by other supply chain members. In addition, we take into account the complex and dynamic market environment, which will impact the operation effect of auction policies. With identical auction items, the profit-maximising firm must decide auction lot-size, which is the number of units in each auction, minimum initial bid, and the time interval between auctions. To obtain the optimal solution, nested partitions framework and optimal expected opportunity cost algorithm are integrated to improve computation accuracy and efficiency. A case study based on real data is conducted to implement and validate the proposed approach. Furthermore, based on the model, the paper studies the sensitivities of the decision variables under different supply and demand scenarios. |
doi_str_mv | 10.1080/00207543.2017.1373203 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047148929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047148929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-8a295155c6630a3e9ccfd06127a507ac2001b998c77c4d346faa43c0edc14af73</originalsourceid><addsrcrecordid>eNo1kF1LwzAUhoMoOKc_QQh43XmStE3rnQy_YLAbBe_CWZa6jK6pSarsB_i_Td3MTUjyvOclDyHXDGYMKrgF4CCLXMw4MDljQgoO4oRMmCjLrKiq91MyGZlshM7JRQhbSKuo8gn5WfbR7rCltvsyXXR-T7Xronct_bZxQ4P5HNK9TYTrWtsZioOO1nUpQPHDWz20cfCGhqHv2xTeoO3uKI6PKZetMJg1DXY3tPgXc2OfDYcD9r13qDeX5KzBNpir4z4lb48Pr_PnbLF8epnfLzItmIhZhbwuWFHoshSAwtRaN2soGZdYgETNAdiqristpc7XIi8bxFxoMGvNcmykmJKbw9xUm_4Votq6wXepUnHIJcurmteJKg6U9i4EbxrV--TI7xUDNRpX_8bVaFwdjYtfci13CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047148929</pqid></control><display><type>article</type><title>Optimal inventory control with sequential online auction in agriculture supply chain: an agent-based simulation optimisation approach</title><source>Taylor & Francis Journals Complete</source><source>EBSCOhost Business Source Complete</source><creator>Huang, Jingsi ; Song, Jie</creator><creatorcontrib>Huang, Jingsi ; Song, Jie</creatorcontrib><description>With the development of e-commerce, in agriculture supply chain, online auction is adopted as an inventory clearing tool. Comparing to mathematical models studying inventory control over online sequential auctions, our agent-based simulation model could systematically describe the complexities of bidders' information interactions and behaviour preferences caused from financial and production perspectives, and by other supply chain members. In addition, we take into account the complex and dynamic market environment, which will impact the operation effect of auction policies. With identical auction items, the profit-maximising firm must decide auction lot-size, which is the number of units in each auction, minimum initial bid, and the time interval between auctions. To obtain the optimal solution, nested partitions framework and optimal expected opportunity cost algorithm are integrated to improve computation accuracy and efficiency. A case study based on real data is conducted to implement and validate the proposed approach. Furthermore, based on the model, the paper studies the sensitivities of the decision variables under different supply and demand scenarios.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2017.1373203</identifier><language>eng</language><publisher>London: Taylor & Francis LLC</publisher><subject>Agent-based models ; Agriculture ; Auctioning ; Auctions ; Computer simulation ; Computing time ; Environmental impact ; Inventory control ; Optimization ; Supply & demand ; Supply chains</subject><ispartof>International journal of production research, 2018-03, Vol.56 (6), p.2322-2338</ispartof><rights>2017 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-8a295155c6630a3e9ccfd06127a507ac2001b998c77c4d346faa43c0edc14af73</citedby><cites>FETCH-LOGICAL-c313t-8a295155c6630a3e9ccfd06127a507ac2001b998c77c4d346faa43c0edc14af73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Jingsi</creatorcontrib><creatorcontrib>Song, Jie</creatorcontrib><title>Optimal inventory control with sequential online auction in agriculture supply chain: an agent-based simulation optimisation approach</title><title>International journal of production research</title><description>With the development of e-commerce, in agriculture supply chain, online auction is adopted as an inventory clearing tool. Comparing to mathematical models studying inventory control over online sequential auctions, our agent-based simulation model could systematically describe the complexities of bidders' information interactions and behaviour preferences caused from financial and production perspectives, and by other supply chain members. In addition, we take into account the complex and dynamic market environment, which will impact the operation effect of auction policies. With identical auction items, the profit-maximising firm must decide auction lot-size, which is the number of units in each auction, minimum initial bid, and the time interval between auctions. To obtain the optimal solution, nested partitions framework and optimal expected opportunity cost algorithm are integrated to improve computation accuracy and efficiency. A case study based on real data is conducted to implement and validate the proposed approach. Furthermore, based on the model, the paper studies the sensitivities of the decision variables under different supply and demand scenarios.</description><subject>Agent-based models</subject><subject>Agriculture</subject><subject>Auctioning</subject><subject>Auctions</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Environmental impact</subject><subject>Inventory control</subject><subject>Optimization</subject><subject>Supply & demand</subject><subject>Supply chains</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo1kF1LwzAUhoMoOKc_QQh43XmStE3rnQy_YLAbBe_CWZa6jK6pSarsB_i_Td3MTUjyvOclDyHXDGYMKrgF4CCLXMw4MDljQgoO4oRMmCjLrKiq91MyGZlshM7JRQhbSKuo8gn5WfbR7rCltvsyXXR-T7Xronct_bZxQ4P5HNK9TYTrWtsZioOO1nUpQPHDWz20cfCGhqHv2xTeoO3uKI6PKZetMJg1DXY3tPgXc2OfDYcD9r13qDeX5KzBNpir4z4lb48Pr_PnbLF8epnfLzItmIhZhbwuWFHoshSAwtRaN2soGZdYgETNAdiqristpc7XIi8bxFxoMGvNcmykmJKbw9xUm_4Votq6wXepUnHIJcurmteJKg6U9i4EbxrV--TI7xUDNRpX_8bVaFwdjYtfci13CQ</recordid><startdate>20180319</startdate><enddate>20180319</enddate><creator>Huang, Jingsi</creator><creator>Song, Jie</creator><general>Taylor & Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180319</creationdate><title>Optimal inventory control with sequential online auction in agriculture supply chain: an agent-based simulation optimisation approach</title><author>Huang, Jingsi ; Song, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-8a295155c6630a3e9ccfd06127a507ac2001b998c77c4d346faa43c0edc14af73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agent-based models</topic><topic>Agriculture</topic><topic>Auctioning</topic><topic>Auctions</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Environmental impact</topic><topic>Inventory control</topic><topic>Optimization</topic><topic>Supply & demand</topic><topic>Supply chains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jingsi</creatorcontrib><creatorcontrib>Song, Jie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jingsi</au><au>Song, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal inventory control with sequential online auction in agriculture supply chain: an agent-based simulation optimisation approach</atitle><jtitle>International journal of production research</jtitle><date>2018-03-19</date><risdate>2018</risdate><volume>56</volume><issue>6</issue><spage>2322</spage><epage>2338</epage><pages>2322-2338</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>With the development of e-commerce, in agriculture supply chain, online auction is adopted as an inventory clearing tool. Comparing to mathematical models studying inventory control over online sequential auctions, our agent-based simulation model could systematically describe the complexities of bidders' information interactions and behaviour preferences caused from financial and production perspectives, and by other supply chain members. In addition, we take into account the complex and dynamic market environment, which will impact the operation effect of auction policies. With identical auction items, the profit-maximising firm must decide auction lot-size, which is the number of units in each auction, minimum initial bid, and the time interval between auctions. To obtain the optimal solution, nested partitions framework and optimal expected opportunity cost algorithm are integrated to improve computation accuracy and efficiency. A case study based on real data is conducted to implement and validate the proposed approach. Furthermore, based on the model, the paper studies the sensitivities of the decision variables under different supply and demand scenarios.</abstract><cop>London</cop><pub>Taylor & Francis LLC</pub><doi>10.1080/00207543.2017.1373203</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7543 |
ispartof | International journal of production research, 2018-03, Vol.56 (6), p.2322-2338 |
issn | 0020-7543 1366-588X |
language | eng |
recordid | cdi_proquest_journals_2047148929 |
source | Taylor & Francis Journals Complete; EBSCOhost Business Source Complete |
subjects | Agent-based models Agriculture Auctioning Auctions Computer simulation Computing time Environmental impact Inventory control Optimization Supply & demand Supply chains |
title | Optimal inventory control with sequential online auction in agriculture supply chain: an agent-based simulation optimisation approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20inventory%20control%20with%20sequential%20online%20auction%20in%20agriculture%20supply%20chain:%20an%20agent-based%20simulation%20optimisation%20approach&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Huang,%20Jingsi&rft.date=2018-03-19&rft.volume=56&rft.issue=6&rft.spage=2322&rft.epage=2338&rft.pages=2322-2338&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2017.1373203&rft_dat=%3Cproquest_cross%3E2047148929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047148929&rft_id=info:pmid/&rfr_iscdi=true |