Pythagorean Triples from Harmonic Sequences

Shows how all primitive Pythagorean triples can be generated from harmonic sequences. Use inductive and deductive reasoning to explore how Pythagorean triples are connected with another area of mathematics. (KHR)

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Mathematics teacher 2001-03, Vol.94 (3), p.218-222
Hauptverfasser: DiDomenico, Angelo S., Tanner, Randy J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222
container_issue 3
container_start_page 218
container_title The Mathematics teacher
container_volume 94
creator DiDomenico, Angelo S.
Tanner, Randy J.
description Shows how all primitive Pythagorean triples can be generated from harmonic sequences. Use inductive and deductive reasoning to explore how Pythagorean triples are connected with another area of mathematics. (KHR)
doi_str_mv 10.5951/MT.94.3.0218
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_204701805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ673730</ericid><jstor_id>20870637</jstor_id><sourcerecordid>20870637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1075-77c7d3332089f163b64f28851f5afef0e4d337407299eac112df1f83939634df3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs3jwqL17rr5GuTHKVUq7QouJ5DTBPd0m5q0h76701Z6Vzm8DzMy7wIXWOouOL4Yd5UilW0AoLlCRoQSqEELskpGgAQXnJRq3N0kdIS8jAJAzR6329_zHeIznRFE9vNyqXCx7AupiauQ9fa4sP97lxnXbpEZ96skrv630P0-TRpxtNy9vb8Mn6clRaD4KUQViwopQSk8rimXzXzREqOPTfeeXAsU8FAEKWcsRiThcdeUkVVTdnC0yG66-9uYsjRaauXYRe7HKkJMAFYAs_SfS_ZGFKKzutNbNcm7jUGfWhDzxutmKb60EbWb3rdxdYe1clrLaigkPFtj5dpG-KR5xcE1Nn4AxLgYnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204701805</pqid></control><display><type>article</type><title>Pythagorean Triples from Harmonic Sequences</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR</source><creator>DiDomenico, Angelo S. ; Tanner, Randy J.</creator><creatorcontrib>DiDomenico, Angelo S. ; Tanner, Randy J.</creatorcontrib><description>Shows how all primitive Pythagorean triples can be generated from harmonic sequences. Use inductive and deductive reasoning to explore how Pythagorean triples are connected with another area of mathematics. (KHR)</description><identifier>ISSN: 0025-5769</identifier><identifier>EISSN: 2330-0582</identifier><identifier>DOI: 10.5951/MT.94.3.0218</identifier><identifier>CODEN: MATAAP</identifier><language>eng</language><publisher>Reston: National Council of Teachers of Mathematics</publisher><subject>Algebra ; Arithmetic ; Deduction ; Discovery Learning ; Fibonacci numbers ; Geometric Concepts ; High School Students ; Induction ; Integers ; Interdisciplinary Approach ; Mathematical sequences ; Mathematical sets ; Mathematics education ; Mathematics Instruction ; Mathematics Teachers ; Numbers ; Patterns in Mathematics ; Pythagoreanism ; Secondary Education ; Secondary school students ; Teaching Methods ; Triangles</subject><ispartof>The Mathematics teacher, 2001-03, Vol.94 (3), p.218-222</ispartof><rights>Copyright © 2001 The National Council of Teachers of Mathematics, Inc.</rights><rights>Copyright National Council of Teachers of Mathematics Mar 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20870637$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20870637$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ673730$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>DiDomenico, Angelo S.</creatorcontrib><creatorcontrib>Tanner, Randy J.</creatorcontrib><title>Pythagorean Triples from Harmonic Sequences</title><title>The Mathematics teacher</title><description>Shows how all primitive Pythagorean triples can be generated from harmonic sequences. Use inductive and deductive reasoning to explore how Pythagorean triples are connected with another area of mathematics. (KHR)</description><subject>Algebra</subject><subject>Arithmetic</subject><subject>Deduction</subject><subject>Discovery Learning</subject><subject>Fibonacci numbers</subject><subject>Geometric Concepts</subject><subject>High School Students</subject><subject>Induction</subject><subject>Integers</subject><subject>Interdisciplinary Approach</subject><subject>Mathematical sequences</subject><subject>Mathematical sets</subject><subject>Mathematics education</subject><subject>Mathematics Instruction</subject><subject>Mathematics Teachers</subject><subject>Numbers</subject><subject>Patterns in Mathematics</subject><subject>Pythagoreanism</subject><subject>Secondary Education</subject><subject>Secondary school students</subject><subject>Teaching Methods</subject><subject>Triangles</subject><issn>0025-5769</issn><issn>2330-0582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LAzEQhoMoWKs3jwqL17rr5GuTHKVUq7QouJ5DTBPd0m5q0h76701Z6Vzm8DzMy7wIXWOouOL4Yd5UilW0AoLlCRoQSqEELskpGgAQXnJRq3N0kdIS8jAJAzR6329_zHeIznRFE9vNyqXCx7AupiauQ9fa4sP97lxnXbpEZ96skrv630P0-TRpxtNy9vb8Mn6clRaD4KUQViwopQSk8rimXzXzREqOPTfeeXAsU8FAEKWcsRiThcdeUkVVTdnC0yG66-9uYsjRaauXYRe7HKkJMAFYAs_SfS_ZGFKKzutNbNcm7jUGfWhDzxutmKb60EbWb3rdxdYe1clrLaigkPFtj5dpG-KR5xcE1Nn4AxLgYnI</recordid><startdate>20010301</startdate><enddate>20010301</enddate><creator>DiDomenico, Angelo S.</creator><creator>Tanner, Randy J.</creator><general>National Council of Teachers of Mathematics</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>8A4</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M0P</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20010301</creationdate><title>Pythagorean Triples from Harmonic Sequences</title><author>DiDomenico, Angelo S. ; Tanner, Randy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1075-77c7d3332089f163b64f28851f5afef0e4d337407299eac112df1f83939634df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algebra</topic><topic>Arithmetic</topic><topic>Deduction</topic><topic>Discovery Learning</topic><topic>Fibonacci numbers</topic><topic>Geometric Concepts</topic><topic>High School Students</topic><topic>Induction</topic><topic>Integers</topic><topic>Interdisciplinary Approach</topic><topic>Mathematical sequences</topic><topic>Mathematical sets</topic><topic>Mathematics education</topic><topic>Mathematics Instruction</topic><topic>Mathematics Teachers</topic><topic>Numbers</topic><topic>Patterns in Mathematics</topic><topic>Pythagoreanism</topic><topic>Secondary Education</topic><topic>Secondary school students</topic><topic>Teaching Methods</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DiDomenico, Angelo S.</creatorcontrib><creatorcontrib>Tanner, Randy J.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Education Periodicals</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Education Journals</collection><collection>ProQuest Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>The Mathematics teacher</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DiDomenico, Angelo S.</au><au>Tanner, Randy J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ673730</ericid><atitle>Pythagorean Triples from Harmonic Sequences</atitle><jtitle>The Mathematics teacher</jtitle><date>2001-03-01</date><risdate>2001</risdate><volume>94</volume><issue>3</issue><spage>218</spage><epage>222</epage><pages>218-222</pages><issn>0025-5769</issn><eissn>2330-0582</eissn><coden>MATAAP</coden><abstract>Shows how all primitive Pythagorean triples can be generated from harmonic sequences. Use inductive and deductive reasoning to explore how Pythagorean triples are connected with another area of mathematics. (KHR)</abstract><cop>Reston</cop><pub>National Council of Teachers of Mathematics</pub><doi>10.5951/MT.94.3.0218</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5769
ispartof The Mathematics teacher, 2001-03, Vol.94 (3), p.218-222
issn 0025-5769
2330-0582
language eng
recordid cdi_proquest_journals_204701805
source JSTOR Mathematics & Statistics; JSTOR
subjects Algebra
Arithmetic
Deduction
Discovery Learning
Fibonacci numbers
Geometric Concepts
High School Students
Induction
Integers
Interdisciplinary Approach
Mathematical sequences
Mathematical sets
Mathematics education
Mathematics Instruction
Mathematics Teachers
Numbers
Patterns in Mathematics
Pythagoreanism
Secondary Education
Secondary school students
Teaching Methods
Triangles
title Pythagorean Triples from Harmonic Sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pythagorean%20Triples%20from%20Harmonic%20Sequences&rft.jtitle=The%20Mathematics%20teacher&rft.au=DiDomenico,%20Angelo%20S.&rft.date=2001-03-01&rft.volume=94&rft.issue=3&rft.spage=218&rft.epage=222&rft.pages=218-222&rft.issn=0025-5769&rft.eissn=2330-0582&rft.coden=MATAAP&rft_id=info:doi/10.5951/MT.94.3.0218&rft_dat=%3Cjstor_proqu%3E20870637%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204701805&rft_id=info:pmid/&rft_ericid=EJ673730&rft_jstor_id=20870637&rfr_iscdi=true