Redox-triggered hydrogels revealing switchable stiffness properties and shape-memory functions
The synthesis, characterization and application of redox-switchable hydrogels are described. The first system includes the crosslinking of terpyridine-functionalized acrylamide copolymer chains by redox-active metal-ion terpyridine complexes (M n/n+1 = Ru 2+/3+ ; Os 2+/3+ ). The redox state of the c...
Gespeichert in:
Veröffentlicht in: | Polymer chemistry 2018-06, Vol.9 (21), p.2905-2912 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2912 |
---|---|
container_issue | 21 |
container_start_page | 2905 |
container_title | Polymer chemistry |
container_volume | 9 |
creator | Fadeev, Michael Davidson-Rozenfeld, Gilad Biniuri, Yonatan Yakobi, Ravit Cazelles, Rémi Aleman-Garcia, Miguel Angel Willner, Itamar |
description | The synthesis, characterization and application of redox-switchable hydrogels are described. The first system includes the crosslinking of terpyridine-functionalized acrylamide copolymer chains by redox-active metal-ion terpyridine complexes (M
n/n+1
= Ru
2+/3+
; Os
2+/3+
). The redox state of the complexes bridging the hydrogel controls the stiffness of the resulting hydrogels. The Ru
2+
-terpyridine polyacrylamide hydrogel reveals enhanced stiffness (
G
′ = 110 Pa) compared to the Ru
3+
-terpyridine bridged hydrogel that exhibits lower stiffness (
G
′ = 50 Pa). By the cyclic oxidation and reduction of the hydrogel with persulfate and dopamine, respectively, reversible switching of the hydrogel stiffness is demonstrated. Similarly, the Os
3+
-terpyridine-crosslinked hydrogel reveals lower stiffness (
G
′ = 30 Pa) compared to the Os
2+
-terpyridine-bridged hydrogel (
G
′ = 45 Pa). By the reversible oxidation and reduction of the Os
2+/3+
with sodium persulfate and ascorbic acid, the switchable stiffness of the hydrogel is demonstrated. The second system involves metal-ion-crosslinked carboxymethylcellulose hydrogels (M
n+1/n
= Fe
3+/2+
; Ru
3+/2+
). The reduced metal-ion-crosslinked hydrogels Fe
2+
-carboxymethylcellulose (formed in the presence of ascorbic acid) and the Ru
2+
-carboxymethylcellulose (formed in the presence of dopamine) exhibit lower stiffness values corresponding to 80 Pa and 320 Pa, respectively, while high-stiffness Fe
3+
- and Ru
3+
-carboxymethylcellulose hydrogels (formed in the presence of sodium persulfate) are observed,
G
′ = 210 Pa and 460 Pa, respectively. The reversible redox-stimulated switching of the stiffness of the hydrogels is demonstrated. In addition, carboxymethylcellulose chains modified with self-complementary nucleic acid tethers are crosslinked by two cooperative crosslinkers consisting of Fe
3+/2+
-carboxylate and DNA duplexes. The resulting Fe
3+
-carboxymethyl cellulose/duplex nucleic acid-bridged hydrogel exhibits high stiffness,
G
′ = 210 Pa, whereas the Fe
2+
-carboxymethylcellulose/duplex DNA reveals substantially lower stiffness,
G
′ = 80 Pa. The hydrogel reveals reversible shape-memory properties. |
doi_str_mv | 10.1039/C8PY00515J |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047006008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047006008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-c418d408f9bb0d98eeb351d9c950e42f291451827330c3c251e70552b8fc756a3</originalsourceid><addsrcrecordid>eNpFkEFLxDAQhYMouKx78RcEvAnVSdK0zVEWdZUFRfTgxdImk26WbluTrLr_3sqKvsu8w5uZx0fIKYMLBkJdzovHVwDJ5P0BmbBcqkSpjB_-eZkek1kIaxglWMpFNiFvT2j6ryR61zTo0dDVzvi-wTZQjx9Yta5raPh0Ua-qukUaorO2wxDo4PsBfXQYaNUZGlbVgMkGN73fUbvtdHR9F07Ika3agLPfOSUvN9fP80WyfLi9m18tE82liolOWWFSKKyqazCqQKyFZEZpJQFTbrliqWQFz4UALcYdhjlIyevC6lxmlZiSs_3dsdX7FkMs1_3Wd-PLkkOaA2QAxZg636e070PwaMvBu03ldyWD8gdh-Y9QfAMquWRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047006008</pqid></control><display><type>article</type><title>Redox-triggered hydrogels revealing switchable stiffness properties and shape-memory functions</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Fadeev, Michael ; Davidson-Rozenfeld, Gilad ; Biniuri, Yonatan ; Yakobi, Ravit ; Cazelles, Rémi ; Aleman-Garcia, Miguel Angel ; Willner, Itamar</creator><creatorcontrib>Fadeev, Michael ; Davidson-Rozenfeld, Gilad ; Biniuri, Yonatan ; Yakobi, Ravit ; Cazelles, Rémi ; Aleman-Garcia, Miguel Angel ; Willner, Itamar</creatorcontrib><description>The synthesis, characterization and application of redox-switchable hydrogels are described. The first system includes the crosslinking of terpyridine-functionalized acrylamide copolymer chains by redox-active metal-ion terpyridine complexes (M
n/n+1
= Ru
2+/3+
; Os
2+/3+
). The redox state of the complexes bridging the hydrogel controls the stiffness of the resulting hydrogels. The Ru
2+
-terpyridine polyacrylamide hydrogel reveals enhanced stiffness (
G
′ = 110 Pa) compared to the Ru
3+
-terpyridine bridged hydrogel that exhibits lower stiffness (
G
′ = 50 Pa). By the cyclic oxidation and reduction of the hydrogel with persulfate and dopamine, respectively, reversible switching of the hydrogel stiffness is demonstrated. Similarly, the Os
3+
-terpyridine-crosslinked hydrogel reveals lower stiffness (
G
′ = 30 Pa) compared to the Os
2+
-terpyridine-bridged hydrogel (
G
′ = 45 Pa). By the reversible oxidation and reduction of the Os
2+/3+
with sodium persulfate and ascorbic acid, the switchable stiffness of the hydrogel is demonstrated. The second system involves metal-ion-crosslinked carboxymethylcellulose hydrogels (M
n+1/n
= Fe
3+/2+
; Ru
3+/2+
). The reduced metal-ion-crosslinked hydrogels Fe
2+
-carboxymethylcellulose (formed in the presence of ascorbic acid) and the Ru
2+
-carboxymethylcellulose (formed in the presence of dopamine) exhibit lower stiffness values corresponding to 80 Pa and 320 Pa, respectively, while high-stiffness Fe
3+
- and Ru
3+
-carboxymethylcellulose hydrogels (formed in the presence of sodium persulfate) are observed,
G
′ = 210 Pa and 460 Pa, respectively. The reversible redox-stimulated switching of the stiffness of the hydrogels is demonstrated. In addition, carboxymethylcellulose chains modified with self-complementary nucleic acid tethers are crosslinked by two cooperative crosslinkers consisting of Fe
3+/2+
-carboxylate and DNA duplexes. The resulting Fe
3+
-carboxymethyl cellulose/duplex nucleic acid-bridged hydrogel exhibits high stiffness,
G
′ = 210 Pa, whereas the Fe
2+
-carboxymethylcellulose/duplex DNA reveals substantially lower stiffness,
G
′ = 80 Pa. The hydrogel reveals reversible shape-memory properties.</description><identifier>ISSN: 1759-9954</identifier><identifier>EISSN: 1759-9962</identifier><identifier>DOI: 10.1039/C8PY00515J</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acids ; Acrylamide ; Ascorbic acid ; Carboxymethyl cellulose ; Chains ; Coordination compounds ; Crosslinking ; Deoxyribonucleic acid ; DNA ; Dopamine ; Hydrogels ; Metal ions ; Oxidation ; Polymer chemistry ; Reduction ; Shape memory ; Sodium persulfate ; Stiffness ; Switching ; Tethers</subject><ispartof>Polymer chemistry, 2018-06, Vol.9 (21), p.2905-2912</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-c418d408f9bb0d98eeb351d9c950e42f291451827330c3c251e70552b8fc756a3</citedby><cites>FETCH-LOGICAL-c259t-c418d408f9bb0d98eeb351d9c950e42f291451827330c3c251e70552b8fc756a3</cites><orcidid>0000-0001-9710-9077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fadeev, Michael</creatorcontrib><creatorcontrib>Davidson-Rozenfeld, Gilad</creatorcontrib><creatorcontrib>Biniuri, Yonatan</creatorcontrib><creatorcontrib>Yakobi, Ravit</creatorcontrib><creatorcontrib>Cazelles, Rémi</creatorcontrib><creatorcontrib>Aleman-Garcia, Miguel Angel</creatorcontrib><creatorcontrib>Willner, Itamar</creatorcontrib><title>Redox-triggered hydrogels revealing switchable stiffness properties and shape-memory functions</title><title>Polymer chemistry</title><description>The synthesis, characterization and application of redox-switchable hydrogels are described. The first system includes the crosslinking of terpyridine-functionalized acrylamide copolymer chains by redox-active metal-ion terpyridine complexes (M
n/n+1
= Ru
2+/3+
; Os
2+/3+
). The redox state of the complexes bridging the hydrogel controls the stiffness of the resulting hydrogels. The Ru
2+
-terpyridine polyacrylamide hydrogel reveals enhanced stiffness (
G
′ = 110 Pa) compared to the Ru
3+
-terpyridine bridged hydrogel that exhibits lower stiffness (
G
′ = 50 Pa). By the cyclic oxidation and reduction of the hydrogel with persulfate and dopamine, respectively, reversible switching of the hydrogel stiffness is demonstrated. Similarly, the Os
3+
-terpyridine-crosslinked hydrogel reveals lower stiffness (
G
′ = 30 Pa) compared to the Os
2+
-terpyridine-bridged hydrogel (
G
′ = 45 Pa). By the reversible oxidation and reduction of the Os
2+/3+
with sodium persulfate and ascorbic acid, the switchable stiffness of the hydrogel is demonstrated. The second system involves metal-ion-crosslinked carboxymethylcellulose hydrogels (M
n+1/n
= Fe
3+/2+
; Ru
3+/2+
). The reduced metal-ion-crosslinked hydrogels Fe
2+
-carboxymethylcellulose (formed in the presence of ascorbic acid) and the Ru
2+
-carboxymethylcellulose (formed in the presence of dopamine) exhibit lower stiffness values corresponding to 80 Pa and 320 Pa, respectively, while high-stiffness Fe
3+
- and Ru
3+
-carboxymethylcellulose hydrogels (formed in the presence of sodium persulfate) are observed,
G
′ = 210 Pa and 460 Pa, respectively. The reversible redox-stimulated switching of the stiffness of the hydrogels is demonstrated. In addition, carboxymethylcellulose chains modified with self-complementary nucleic acid tethers are crosslinked by two cooperative crosslinkers consisting of Fe
3+/2+
-carboxylate and DNA duplexes. The resulting Fe
3+
-carboxymethyl cellulose/duplex nucleic acid-bridged hydrogel exhibits high stiffness,
G
′ = 210 Pa, whereas the Fe
2+
-carboxymethylcellulose/duplex DNA reveals substantially lower stiffness,
G
′ = 80 Pa. The hydrogel reveals reversible shape-memory properties.</description><subject>Acids</subject><subject>Acrylamide</subject><subject>Ascorbic acid</subject><subject>Carboxymethyl cellulose</subject><subject>Chains</subject><subject>Coordination compounds</subject><subject>Crosslinking</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Dopamine</subject><subject>Hydrogels</subject><subject>Metal ions</subject><subject>Oxidation</subject><subject>Polymer chemistry</subject><subject>Reduction</subject><subject>Shape memory</subject><subject>Sodium persulfate</subject><subject>Stiffness</subject><subject>Switching</subject><subject>Tethers</subject><issn>1759-9954</issn><issn>1759-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLxDAQhYMouKx78RcEvAnVSdK0zVEWdZUFRfTgxdImk26WbluTrLr_3sqKvsu8w5uZx0fIKYMLBkJdzovHVwDJ5P0BmbBcqkSpjB_-eZkek1kIaxglWMpFNiFvT2j6ryR61zTo0dDVzvi-wTZQjx9Yta5raPh0Ua-qukUaorO2wxDo4PsBfXQYaNUZGlbVgMkGN73fUbvtdHR9F07Ika3agLPfOSUvN9fP80WyfLi9m18tE82liolOWWFSKKyqazCqQKyFZEZpJQFTbrliqWQFz4UALcYdhjlIyevC6lxmlZiSs_3dsdX7FkMs1_3Wd-PLkkOaA2QAxZg636e070PwaMvBu03ldyWD8gdh-Y9QfAMquWRU</recordid><startdate>20180607</startdate><enddate>20180607</enddate><creator>Fadeev, Michael</creator><creator>Davidson-Rozenfeld, Gilad</creator><creator>Biniuri, Yonatan</creator><creator>Yakobi, Ravit</creator><creator>Cazelles, Rémi</creator><creator>Aleman-Garcia, Miguel Angel</creator><creator>Willner, Itamar</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9710-9077</orcidid></search><sort><creationdate>20180607</creationdate><title>Redox-triggered hydrogels revealing switchable stiffness properties and shape-memory functions</title><author>Fadeev, Michael ; Davidson-Rozenfeld, Gilad ; Biniuri, Yonatan ; Yakobi, Ravit ; Cazelles, Rémi ; Aleman-Garcia, Miguel Angel ; Willner, Itamar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-c418d408f9bb0d98eeb351d9c950e42f291451827330c3c251e70552b8fc756a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acids</topic><topic>Acrylamide</topic><topic>Ascorbic acid</topic><topic>Carboxymethyl cellulose</topic><topic>Chains</topic><topic>Coordination compounds</topic><topic>Crosslinking</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Dopamine</topic><topic>Hydrogels</topic><topic>Metal ions</topic><topic>Oxidation</topic><topic>Polymer chemistry</topic><topic>Reduction</topic><topic>Shape memory</topic><topic>Sodium persulfate</topic><topic>Stiffness</topic><topic>Switching</topic><topic>Tethers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fadeev, Michael</creatorcontrib><creatorcontrib>Davidson-Rozenfeld, Gilad</creatorcontrib><creatorcontrib>Biniuri, Yonatan</creatorcontrib><creatorcontrib>Yakobi, Ravit</creatorcontrib><creatorcontrib>Cazelles, Rémi</creatorcontrib><creatorcontrib>Aleman-Garcia, Miguel Angel</creatorcontrib><creatorcontrib>Willner, Itamar</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fadeev, Michael</au><au>Davidson-Rozenfeld, Gilad</au><au>Biniuri, Yonatan</au><au>Yakobi, Ravit</au><au>Cazelles, Rémi</au><au>Aleman-Garcia, Miguel Angel</au><au>Willner, Itamar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox-triggered hydrogels revealing switchable stiffness properties and shape-memory functions</atitle><jtitle>Polymer chemistry</jtitle><date>2018-06-07</date><risdate>2018</risdate><volume>9</volume><issue>21</issue><spage>2905</spage><epage>2912</epage><pages>2905-2912</pages><issn>1759-9954</issn><eissn>1759-9962</eissn><abstract>The synthesis, characterization and application of redox-switchable hydrogels are described. The first system includes the crosslinking of terpyridine-functionalized acrylamide copolymer chains by redox-active metal-ion terpyridine complexes (M
n/n+1
= Ru
2+/3+
; Os
2+/3+
). The redox state of the complexes bridging the hydrogel controls the stiffness of the resulting hydrogels. The Ru
2+
-terpyridine polyacrylamide hydrogel reveals enhanced stiffness (
G
′ = 110 Pa) compared to the Ru
3+
-terpyridine bridged hydrogel that exhibits lower stiffness (
G
′ = 50 Pa). By the cyclic oxidation and reduction of the hydrogel with persulfate and dopamine, respectively, reversible switching of the hydrogel stiffness is demonstrated. Similarly, the Os
3+
-terpyridine-crosslinked hydrogel reveals lower stiffness (
G
′ = 30 Pa) compared to the Os
2+
-terpyridine-bridged hydrogel (
G
′ = 45 Pa). By the reversible oxidation and reduction of the Os
2+/3+
with sodium persulfate and ascorbic acid, the switchable stiffness of the hydrogel is demonstrated. The second system involves metal-ion-crosslinked carboxymethylcellulose hydrogels (M
n+1/n
= Fe
3+/2+
; Ru
3+/2+
). The reduced metal-ion-crosslinked hydrogels Fe
2+
-carboxymethylcellulose (formed in the presence of ascorbic acid) and the Ru
2+
-carboxymethylcellulose (formed in the presence of dopamine) exhibit lower stiffness values corresponding to 80 Pa and 320 Pa, respectively, while high-stiffness Fe
3+
- and Ru
3+
-carboxymethylcellulose hydrogels (formed in the presence of sodium persulfate) are observed,
G
′ = 210 Pa and 460 Pa, respectively. The reversible redox-stimulated switching of the stiffness of the hydrogels is demonstrated. In addition, carboxymethylcellulose chains modified with self-complementary nucleic acid tethers are crosslinked by two cooperative crosslinkers consisting of Fe
3+/2+
-carboxylate and DNA duplexes. The resulting Fe
3+
-carboxymethyl cellulose/duplex nucleic acid-bridged hydrogel exhibits high stiffness,
G
′ = 210 Pa, whereas the Fe
2+
-carboxymethylcellulose/duplex DNA reveals substantially lower stiffness,
G
′ = 80 Pa. The hydrogel reveals reversible shape-memory properties.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8PY00515J</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9710-9077</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1759-9954 |
ispartof | Polymer chemistry, 2018-06, Vol.9 (21), p.2905-2912 |
issn | 1759-9954 1759-9962 |
language | eng |
recordid | cdi_proquest_journals_2047006008 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Acids Acrylamide Ascorbic acid Carboxymethyl cellulose Chains Coordination compounds Crosslinking Deoxyribonucleic acid DNA Dopamine Hydrogels Metal ions Oxidation Polymer chemistry Reduction Shape memory Sodium persulfate Stiffness Switching Tethers |
title | Redox-triggered hydrogels revealing switchable stiffness properties and shape-memory functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox-triggered%20hydrogels%20revealing%20switchable%20stiffness%20properties%20and%20shape-memory%20functions&rft.jtitle=Polymer%20chemistry&rft.au=Fadeev,%20Michael&rft.date=2018-06-07&rft.volume=9&rft.issue=21&rft.spage=2905&rft.epage=2912&rft.pages=2905-2912&rft.issn=1759-9954&rft.eissn=1759-9962&rft_id=info:doi/10.1039/C8PY00515J&rft_dat=%3Cproquest_cross%3E2047006008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047006008&rft_id=info:pmid/&rfr_iscdi=true |