Redox-triggered hydrogels revealing switchable stiffness properties and shape-memory functions

The synthesis, characterization and application of redox-switchable hydrogels are described. The first system includes the crosslinking of terpyridine-functionalized acrylamide copolymer chains by redox-active metal-ion terpyridine complexes (M n/n+1 = Ru 2+/3+ ; Os 2+/3+ ). The redox state of the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer chemistry 2018-06, Vol.9 (21), p.2905-2912
Hauptverfasser: Fadeev, Michael, Davidson-Rozenfeld, Gilad, Biniuri, Yonatan, Yakobi, Ravit, Cazelles, Rémi, Aleman-Garcia, Miguel Angel, Willner, Itamar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2912
container_issue 21
container_start_page 2905
container_title Polymer chemistry
container_volume 9
creator Fadeev, Michael
Davidson-Rozenfeld, Gilad
Biniuri, Yonatan
Yakobi, Ravit
Cazelles, Rémi
Aleman-Garcia, Miguel Angel
Willner, Itamar
description The synthesis, characterization and application of redox-switchable hydrogels are described. The first system includes the crosslinking of terpyridine-functionalized acrylamide copolymer chains by redox-active metal-ion terpyridine complexes (M n/n+1 = Ru 2+/3+ ; Os 2+/3+ ). The redox state of the complexes bridging the hydrogel controls the stiffness of the resulting hydrogels. The Ru 2+ -terpyridine polyacrylamide hydrogel reveals enhanced stiffness ( G ′ = 110 Pa) compared to the Ru 3+ -terpyridine bridged hydrogel that exhibits lower stiffness ( G ′ = 50 Pa). By the cyclic oxidation and reduction of the hydrogel with persulfate and dopamine, respectively, reversible switching of the hydrogel stiffness is demonstrated. Similarly, the Os 3+ -terpyridine-crosslinked hydrogel reveals lower stiffness ( G ′ = 30 Pa) compared to the Os 2+ -terpyridine-bridged hydrogel ( G ′ = 45 Pa). By the reversible oxidation and reduction of the Os 2+/3+ with sodium persulfate and ascorbic acid, the switchable stiffness of the hydrogel is demonstrated. The second system involves metal-ion-crosslinked carboxymethylcellulose hydrogels (M n+1/n = Fe 3+/2+ ; Ru 3+/2+ ). The reduced metal-ion-crosslinked hydrogels Fe 2+ -carboxymethylcellulose (formed in the presence of ascorbic acid) and the Ru 2+ -carboxymethylcellulose (formed in the presence of dopamine) exhibit lower stiffness values corresponding to 80 Pa and 320 Pa, respectively, while high-stiffness Fe 3+ - and Ru 3+ -carboxymethylcellulose hydrogels (formed in the presence of sodium persulfate) are observed, G ′ = 210 Pa and 460 Pa, respectively. The reversible redox-stimulated switching of the stiffness of the hydrogels is demonstrated. In addition, carboxymethylcellulose chains modified with self-complementary nucleic acid tethers are crosslinked by two cooperative crosslinkers consisting of Fe 3+/2+ -carboxylate and DNA duplexes. The resulting Fe 3+ -carboxymethyl cellulose/duplex nucleic acid-bridged hydrogel exhibits high stiffness, G ′ = 210 Pa, whereas the Fe 2+ -carboxymethylcellulose/duplex DNA reveals substantially lower stiffness, G ′ = 80 Pa. The hydrogel reveals reversible shape-memory properties.
doi_str_mv 10.1039/C8PY00515J
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047006008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047006008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-c418d408f9bb0d98eeb351d9c950e42f291451827330c3c251e70552b8fc756a3</originalsourceid><addsrcrecordid>eNpFkEFLxDAQhYMouKx78RcEvAnVSdK0zVEWdZUFRfTgxdImk26WbluTrLr_3sqKvsu8w5uZx0fIKYMLBkJdzovHVwDJ5P0BmbBcqkSpjB_-eZkek1kIaxglWMpFNiFvT2j6ryR61zTo0dDVzvi-wTZQjx9Yta5raPh0Ua-qukUaorO2wxDo4PsBfXQYaNUZGlbVgMkGN73fUbvtdHR9F07Ika3agLPfOSUvN9fP80WyfLi9m18tE82liolOWWFSKKyqazCqQKyFZEZpJQFTbrliqWQFz4UALcYdhjlIyevC6lxmlZiSs_3dsdX7FkMs1_3Wd-PLkkOaA2QAxZg636e070PwaMvBu03ldyWD8gdh-Y9QfAMquWRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047006008</pqid></control><display><type>article</type><title>Redox-triggered hydrogels revealing switchable stiffness properties and shape-memory functions</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Fadeev, Michael ; Davidson-Rozenfeld, Gilad ; Biniuri, Yonatan ; Yakobi, Ravit ; Cazelles, Rémi ; Aleman-Garcia, Miguel Angel ; Willner, Itamar</creator><creatorcontrib>Fadeev, Michael ; Davidson-Rozenfeld, Gilad ; Biniuri, Yonatan ; Yakobi, Ravit ; Cazelles, Rémi ; Aleman-Garcia, Miguel Angel ; Willner, Itamar</creatorcontrib><description>The synthesis, characterization and application of redox-switchable hydrogels are described. The first system includes the crosslinking of terpyridine-functionalized acrylamide copolymer chains by redox-active metal-ion terpyridine complexes (M n/n+1 = Ru 2+/3+ ; Os 2+/3+ ). The redox state of the complexes bridging the hydrogel controls the stiffness of the resulting hydrogels. The Ru 2+ -terpyridine polyacrylamide hydrogel reveals enhanced stiffness ( G ′ = 110 Pa) compared to the Ru 3+ -terpyridine bridged hydrogel that exhibits lower stiffness ( G ′ = 50 Pa). By the cyclic oxidation and reduction of the hydrogel with persulfate and dopamine, respectively, reversible switching of the hydrogel stiffness is demonstrated. Similarly, the Os 3+ -terpyridine-crosslinked hydrogel reveals lower stiffness ( G ′ = 30 Pa) compared to the Os 2+ -terpyridine-bridged hydrogel ( G ′ = 45 Pa). By the reversible oxidation and reduction of the Os 2+/3+ with sodium persulfate and ascorbic acid, the switchable stiffness of the hydrogel is demonstrated. The second system involves metal-ion-crosslinked carboxymethylcellulose hydrogels (M n+1/n = Fe 3+/2+ ; Ru 3+/2+ ). The reduced metal-ion-crosslinked hydrogels Fe 2+ -carboxymethylcellulose (formed in the presence of ascorbic acid) and the Ru 2+ -carboxymethylcellulose (formed in the presence of dopamine) exhibit lower stiffness values corresponding to 80 Pa and 320 Pa, respectively, while high-stiffness Fe 3+ - and Ru 3+ -carboxymethylcellulose hydrogels (formed in the presence of sodium persulfate) are observed, G ′ = 210 Pa and 460 Pa, respectively. The reversible redox-stimulated switching of the stiffness of the hydrogels is demonstrated. In addition, carboxymethylcellulose chains modified with self-complementary nucleic acid tethers are crosslinked by two cooperative crosslinkers consisting of Fe 3+/2+ -carboxylate and DNA duplexes. The resulting Fe 3+ -carboxymethyl cellulose/duplex nucleic acid-bridged hydrogel exhibits high stiffness, G ′ = 210 Pa, whereas the Fe 2+ -carboxymethylcellulose/duplex DNA reveals substantially lower stiffness, G ′ = 80 Pa. The hydrogel reveals reversible shape-memory properties.</description><identifier>ISSN: 1759-9954</identifier><identifier>EISSN: 1759-9962</identifier><identifier>DOI: 10.1039/C8PY00515J</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acids ; Acrylamide ; Ascorbic acid ; Carboxymethyl cellulose ; Chains ; Coordination compounds ; Crosslinking ; Deoxyribonucleic acid ; DNA ; Dopamine ; Hydrogels ; Metal ions ; Oxidation ; Polymer chemistry ; Reduction ; Shape memory ; Sodium persulfate ; Stiffness ; Switching ; Tethers</subject><ispartof>Polymer chemistry, 2018-06, Vol.9 (21), p.2905-2912</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-c418d408f9bb0d98eeb351d9c950e42f291451827330c3c251e70552b8fc756a3</citedby><cites>FETCH-LOGICAL-c259t-c418d408f9bb0d98eeb351d9c950e42f291451827330c3c251e70552b8fc756a3</cites><orcidid>0000-0001-9710-9077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fadeev, Michael</creatorcontrib><creatorcontrib>Davidson-Rozenfeld, Gilad</creatorcontrib><creatorcontrib>Biniuri, Yonatan</creatorcontrib><creatorcontrib>Yakobi, Ravit</creatorcontrib><creatorcontrib>Cazelles, Rémi</creatorcontrib><creatorcontrib>Aleman-Garcia, Miguel Angel</creatorcontrib><creatorcontrib>Willner, Itamar</creatorcontrib><title>Redox-triggered hydrogels revealing switchable stiffness properties and shape-memory functions</title><title>Polymer chemistry</title><description>The synthesis, characterization and application of redox-switchable hydrogels are described. The first system includes the crosslinking of terpyridine-functionalized acrylamide copolymer chains by redox-active metal-ion terpyridine complexes (M n/n+1 = Ru 2+/3+ ; Os 2+/3+ ). The redox state of the complexes bridging the hydrogel controls the stiffness of the resulting hydrogels. The Ru 2+ -terpyridine polyacrylamide hydrogel reveals enhanced stiffness ( G ′ = 110 Pa) compared to the Ru 3+ -terpyridine bridged hydrogel that exhibits lower stiffness ( G ′ = 50 Pa). By the cyclic oxidation and reduction of the hydrogel with persulfate and dopamine, respectively, reversible switching of the hydrogel stiffness is demonstrated. Similarly, the Os 3+ -terpyridine-crosslinked hydrogel reveals lower stiffness ( G ′ = 30 Pa) compared to the Os 2+ -terpyridine-bridged hydrogel ( G ′ = 45 Pa). By the reversible oxidation and reduction of the Os 2+/3+ with sodium persulfate and ascorbic acid, the switchable stiffness of the hydrogel is demonstrated. The second system involves metal-ion-crosslinked carboxymethylcellulose hydrogels (M n+1/n = Fe 3+/2+ ; Ru 3+/2+ ). The reduced metal-ion-crosslinked hydrogels Fe 2+ -carboxymethylcellulose (formed in the presence of ascorbic acid) and the Ru 2+ -carboxymethylcellulose (formed in the presence of dopamine) exhibit lower stiffness values corresponding to 80 Pa and 320 Pa, respectively, while high-stiffness Fe 3+ - and Ru 3+ -carboxymethylcellulose hydrogels (formed in the presence of sodium persulfate) are observed, G ′ = 210 Pa and 460 Pa, respectively. The reversible redox-stimulated switching of the stiffness of the hydrogels is demonstrated. In addition, carboxymethylcellulose chains modified with self-complementary nucleic acid tethers are crosslinked by two cooperative crosslinkers consisting of Fe 3+/2+ -carboxylate and DNA duplexes. The resulting Fe 3+ -carboxymethyl cellulose/duplex nucleic acid-bridged hydrogel exhibits high stiffness, G ′ = 210 Pa, whereas the Fe 2+ -carboxymethylcellulose/duplex DNA reveals substantially lower stiffness, G ′ = 80 Pa. The hydrogel reveals reversible shape-memory properties.</description><subject>Acids</subject><subject>Acrylamide</subject><subject>Ascorbic acid</subject><subject>Carboxymethyl cellulose</subject><subject>Chains</subject><subject>Coordination compounds</subject><subject>Crosslinking</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Dopamine</subject><subject>Hydrogels</subject><subject>Metal ions</subject><subject>Oxidation</subject><subject>Polymer chemistry</subject><subject>Reduction</subject><subject>Shape memory</subject><subject>Sodium persulfate</subject><subject>Stiffness</subject><subject>Switching</subject><subject>Tethers</subject><issn>1759-9954</issn><issn>1759-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLxDAQhYMouKx78RcEvAnVSdK0zVEWdZUFRfTgxdImk26WbluTrLr_3sqKvsu8w5uZx0fIKYMLBkJdzovHVwDJ5P0BmbBcqkSpjB_-eZkek1kIaxglWMpFNiFvT2j6ryR61zTo0dDVzvi-wTZQjx9Yta5raPh0Ua-qukUaorO2wxDo4PsBfXQYaNUZGlbVgMkGN73fUbvtdHR9F07Ika3agLPfOSUvN9fP80WyfLi9m18tE82liolOWWFSKKyqazCqQKyFZEZpJQFTbrliqWQFz4UALcYdhjlIyevC6lxmlZiSs_3dsdX7FkMs1_3Wd-PLkkOaA2QAxZg636e070PwaMvBu03ldyWD8gdh-Y9QfAMquWRU</recordid><startdate>20180607</startdate><enddate>20180607</enddate><creator>Fadeev, Michael</creator><creator>Davidson-Rozenfeld, Gilad</creator><creator>Biniuri, Yonatan</creator><creator>Yakobi, Ravit</creator><creator>Cazelles, Rémi</creator><creator>Aleman-Garcia, Miguel Angel</creator><creator>Willner, Itamar</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9710-9077</orcidid></search><sort><creationdate>20180607</creationdate><title>Redox-triggered hydrogels revealing switchable stiffness properties and shape-memory functions</title><author>Fadeev, Michael ; Davidson-Rozenfeld, Gilad ; Biniuri, Yonatan ; Yakobi, Ravit ; Cazelles, Rémi ; Aleman-Garcia, Miguel Angel ; Willner, Itamar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-c418d408f9bb0d98eeb351d9c950e42f291451827330c3c251e70552b8fc756a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acids</topic><topic>Acrylamide</topic><topic>Ascorbic acid</topic><topic>Carboxymethyl cellulose</topic><topic>Chains</topic><topic>Coordination compounds</topic><topic>Crosslinking</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Dopamine</topic><topic>Hydrogels</topic><topic>Metal ions</topic><topic>Oxidation</topic><topic>Polymer chemistry</topic><topic>Reduction</topic><topic>Shape memory</topic><topic>Sodium persulfate</topic><topic>Stiffness</topic><topic>Switching</topic><topic>Tethers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fadeev, Michael</creatorcontrib><creatorcontrib>Davidson-Rozenfeld, Gilad</creatorcontrib><creatorcontrib>Biniuri, Yonatan</creatorcontrib><creatorcontrib>Yakobi, Ravit</creatorcontrib><creatorcontrib>Cazelles, Rémi</creatorcontrib><creatorcontrib>Aleman-Garcia, Miguel Angel</creatorcontrib><creatorcontrib>Willner, Itamar</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fadeev, Michael</au><au>Davidson-Rozenfeld, Gilad</au><au>Biniuri, Yonatan</au><au>Yakobi, Ravit</au><au>Cazelles, Rémi</au><au>Aleman-Garcia, Miguel Angel</au><au>Willner, Itamar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox-triggered hydrogels revealing switchable stiffness properties and shape-memory functions</atitle><jtitle>Polymer chemistry</jtitle><date>2018-06-07</date><risdate>2018</risdate><volume>9</volume><issue>21</issue><spage>2905</spage><epage>2912</epage><pages>2905-2912</pages><issn>1759-9954</issn><eissn>1759-9962</eissn><abstract>The synthesis, characterization and application of redox-switchable hydrogels are described. The first system includes the crosslinking of terpyridine-functionalized acrylamide copolymer chains by redox-active metal-ion terpyridine complexes (M n/n+1 = Ru 2+/3+ ; Os 2+/3+ ). The redox state of the complexes bridging the hydrogel controls the stiffness of the resulting hydrogels. The Ru 2+ -terpyridine polyacrylamide hydrogel reveals enhanced stiffness ( G ′ = 110 Pa) compared to the Ru 3+ -terpyridine bridged hydrogel that exhibits lower stiffness ( G ′ = 50 Pa). By the cyclic oxidation and reduction of the hydrogel with persulfate and dopamine, respectively, reversible switching of the hydrogel stiffness is demonstrated. Similarly, the Os 3+ -terpyridine-crosslinked hydrogel reveals lower stiffness ( G ′ = 30 Pa) compared to the Os 2+ -terpyridine-bridged hydrogel ( G ′ = 45 Pa). By the reversible oxidation and reduction of the Os 2+/3+ with sodium persulfate and ascorbic acid, the switchable stiffness of the hydrogel is demonstrated. The second system involves metal-ion-crosslinked carboxymethylcellulose hydrogels (M n+1/n = Fe 3+/2+ ; Ru 3+/2+ ). The reduced metal-ion-crosslinked hydrogels Fe 2+ -carboxymethylcellulose (formed in the presence of ascorbic acid) and the Ru 2+ -carboxymethylcellulose (formed in the presence of dopamine) exhibit lower stiffness values corresponding to 80 Pa and 320 Pa, respectively, while high-stiffness Fe 3+ - and Ru 3+ -carboxymethylcellulose hydrogels (formed in the presence of sodium persulfate) are observed, G ′ = 210 Pa and 460 Pa, respectively. The reversible redox-stimulated switching of the stiffness of the hydrogels is demonstrated. In addition, carboxymethylcellulose chains modified with self-complementary nucleic acid tethers are crosslinked by two cooperative crosslinkers consisting of Fe 3+/2+ -carboxylate and DNA duplexes. The resulting Fe 3+ -carboxymethyl cellulose/duplex nucleic acid-bridged hydrogel exhibits high stiffness, G ′ = 210 Pa, whereas the Fe 2+ -carboxymethylcellulose/duplex DNA reveals substantially lower stiffness, G ′ = 80 Pa. The hydrogel reveals reversible shape-memory properties.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8PY00515J</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9710-9077</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1759-9954
ispartof Polymer chemistry, 2018-06, Vol.9 (21), p.2905-2912
issn 1759-9954
1759-9962
language eng
recordid cdi_proquest_journals_2047006008
source Royal Society Of Chemistry Journals 2008-
subjects Acids
Acrylamide
Ascorbic acid
Carboxymethyl cellulose
Chains
Coordination compounds
Crosslinking
Deoxyribonucleic acid
DNA
Dopamine
Hydrogels
Metal ions
Oxidation
Polymer chemistry
Reduction
Shape memory
Sodium persulfate
Stiffness
Switching
Tethers
title Redox-triggered hydrogels revealing switchable stiffness properties and shape-memory functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox-triggered%20hydrogels%20revealing%20switchable%20stiffness%20properties%20and%20shape-memory%20functions&rft.jtitle=Polymer%20chemistry&rft.au=Fadeev,%20Michael&rft.date=2018-06-07&rft.volume=9&rft.issue=21&rft.spage=2905&rft.epage=2912&rft.pages=2905-2912&rft.issn=1759-9954&rft.eissn=1759-9962&rft_id=info:doi/10.1039/C8PY00515J&rft_dat=%3Cproquest_cross%3E2047006008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047006008&rft_id=info:pmid/&rfr_iscdi=true