Highly penetrative liposome nanomedicine generated by a biomimetic strategy for enhanced cancer chemotherapy

Liposome nanomedicine has been successfully applied for cancer chemotherapy in patients. However, in general, the therapeutic efficacy is confined by its limited accumulation and penetration in solid tumors. Here, we established a biomimetic strategy for the preparation of highly penetrative liposom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials science 2018-05, Vol.6 (6), p.1546-1555
Hauptverfasser: Jia, Yali, Sheng, Zonghai, Hu, Dehong, Yan, Fei, Zhu, Mingting, Gao, Guanhui, Wang, Pan, Liu, Xin, Wang, Xiaobing, Zheng, Hairong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1555
container_issue 6
container_start_page 1546
container_title Biomaterials science
container_volume 6
creator Jia, Yali
Sheng, Zonghai
Hu, Dehong
Yan, Fei
Zhu, Mingting
Gao, Guanhui
Wang, Pan
Liu, Xin
Wang, Xiaobing
Zheng, Hairong
description Liposome nanomedicine has been successfully applied for cancer chemotherapy in patients. However, in general, the therapeutic efficacy is confined by its limited accumulation and penetration in solid tumors. Here, we established a biomimetic strategy for the preparation of highly penetrative liposome nanomedicine for enhanced chemotherapeutic efficacy. By applying this unique type of nanomedicine, membrane proteins on the cancer cells are used as highly penetrative targeting ligands. Biomimetic liposomes are highly stable, exhibiting a superior in vitro homologous targeting ability, and a 2.25-fold deeper penetration in 3D tumor spheroids when compared to conventional liposome nanomedicine. The fluorescence/photoacoustic dual-modal imaging approach demonstrated enhanced tumor accumulation and improved tumor penetration of the biomimetic liposome in C6 glioma tumor-bearing nude mice. Following the intravenous administration of biomimetic liposome nanomedicine, the tumor inhibition rate reached up to 93.3%, which was significantly higher when compared to that of conventional liposome nanomedicine (69.3%). Moreover, histopathological analyses demonstrated that biomimetic liposome nanomedicine has limited side effects. Therefore, these results suggested that a cancer cell membrane-based biomimetic strategy may provide a breakthrough approach for enhancing drug penetration and improving treatment efficacy, holding a great promise for further clinical studies.
doi_str_mv 10.1039/c8bm00256h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2046349171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2046349171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-5187b1c776fdb902187e6a2cd4b719b493fb34c3069518423c6b45af7ad2a9083</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4Mobsy9-AEk4JtQTZo0aR51qBMmvuhzSdJ0zWibmrRCv72Zm7uX_x387g5-AFxjdI8REQ86Vy1CacbqMzBPEeUJzak4P_UEzcAyhB2KxblADF-CWSqYoJTTOWjWdls3E-xNZwYvB_tjYGN7F1xrYCe7GKXVtjNwG4kImBKqCUqorGttawarYdgvmu0EK-eh6WrZ6UjpfXioa9O6oY6r_XQFLirZBLM85gJ8vTx_rtbJ5uP1bfW4STTB2ZBkOOcKa85ZVSqB0jgaJlNdUsWxUFSQShGqCWIiojQlmimayYrLMpUC5WQBbg93e---RxOGYudG38WXRbTCCBWY40jdHSjtXQjeVEXvbSv9VGBU7N0Wq_zp_c_tOsI3x5OjikpO6L9J8gvF7HUV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2046349171</pqid></control><display><type>article</type><title>Highly penetrative liposome nanomedicine generated by a biomimetic strategy for enhanced cancer chemotherapy</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Jia, Yali ; Sheng, Zonghai ; Hu, Dehong ; Yan, Fei ; Zhu, Mingting ; Gao, Guanhui ; Wang, Pan ; Liu, Xin ; Wang, Xiaobing ; Zheng, Hairong</creator><creatorcontrib>Jia, Yali ; Sheng, Zonghai ; Hu, Dehong ; Yan, Fei ; Zhu, Mingting ; Gao, Guanhui ; Wang, Pan ; Liu, Xin ; Wang, Xiaobing ; Zheng, Hairong</creatorcontrib><description>Liposome nanomedicine has been successfully applied for cancer chemotherapy in patients. However, in general, the therapeutic efficacy is confined by its limited accumulation and penetration in solid tumors. Here, we established a biomimetic strategy for the preparation of highly penetrative liposome nanomedicine for enhanced chemotherapeutic efficacy. By applying this unique type of nanomedicine, membrane proteins on the cancer cells are used as highly penetrative targeting ligands. Biomimetic liposomes are highly stable, exhibiting a superior in vitro homologous targeting ability, and a 2.25-fold deeper penetration in 3D tumor spheroids when compared to conventional liposome nanomedicine. The fluorescence/photoacoustic dual-modal imaging approach demonstrated enhanced tumor accumulation and improved tumor penetration of the biomimetic liposome in C6 glioma tumor-bearing nude mice. Following the intravenous administration of biomimetic liposome nanomedicine, the tumor inhibition rate reached up to 93.3%, which was significantly higher when compared to that of conventional liposome nanomedicine (69.3%). Moreover, histopathological analyses demonstrated that biomimetic liposome nanomedicine has limited side effects. Therefore, these results suggested that a cancer cell membrane-based biomimetic strategy may provide a breakthrough approach for enhancing drug penetration and improving treatment efficacy, holding a great promise for further clinical studies.</description><identifier>ISSN: 2047-4830</identifier><identifier>EISSN: 2047-4849</identifier><identifier>DOI: 10.1039/c8bm00256h</identifier><identifier>PMID: 29694474</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Accumulation ; Animals ; Antibiotics, Antineoplastic - administration &amp; dosage ; Antibiotics, Antineoplastic - pharmacokinetics ; Antibiotics, Antineoplastic - therapeutic use ; Biomimetic Materials - metabolism ; Biomimetics ; Cancer ; Cell Line, Tumor ; Chemotherapy ; Doxorubicin - administration &amp; dosage ; Doxorubicin - pharmacokinetics ; Doxorubicin - therapeutic use ; Effectiveness ; Fluorescence ; Glioma - drug therapy ; Glioma - pathology ; Homology ; Humans ; Liposomes ; Liposomes - metabolism ; Mice, Inbred BALB C ; Mice, Nude ; Nanomedicine ; Penetration ; Proteins ; Side effects ; Spheroids ; Strategy ; Tumors</subject><ispartof>Biomaterials science, 2018-05, Vol.6 (6), p.1546-1555</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-5187b1c776fdb902187e6a2cd4b719b493fb34c3069518423c6b45af7ad2a9083</citedby><cites>FETCH-LOGICAL-c315t-5187b1c776fdb902187e6a2cd4b719b493fb34c3069518423c6b45af7ad2a9083</cites><orcidid>0000-0003-3569-3938 ; 0000-0001-5868-8037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29694474$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Yali</creatorcontrib><creatorcontrib>Sheng, Zonghai</creatorcontrib><creatorcontrib>Hu, Dehong</creatorcontrib><creatorcontrib>Yan, Fei</creatorcontrib><creatorcontrib>Zhu, Mingting</creatorcontrib><creatorcontrib>Gao, Guanhui</creatorcontrib><creatorcontrib>Wang, Pan</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Wang, Xiaobing</creatorcontrib><creatorcontrib>Zheng, Hairong</creatorcontrib><title>Highly penetrative liposome nanomedicine generated by a biomimetic strategy for enhanced cancer chemotherapy</title><title>Biomaterials science</title><addtitle>Biomater Sci</addtitle><description>Liposome nanomedicine has been successfully applied for cancer chemotherapy in patients. However, in general, the therapeutic efficacy is confined by its limited accumulation and penetration in solid tumors. Here, we established a biomimetic strategy for the preparation of highly penetrative liposome nanomedicine for enhanced chemotherapeutic efficacy. By applying this unique type of nanomedicine, membrane proteins on the cancer cells are used as highly penetrative targeting ligands. Biomimetic liposomes are highly stable, exhibiting a superior in vitro homologous targeting ability, and a 2.25-fold deeper penetration in 3D tumor spheroids when compared to conventional liposome nanomedicine. The fluorescence/photoacoustic dual-modal imaging approach demonstrated enhanced tumor accumulation and improved tumor penetration of the biomimetic liposome in C6 glioma tumor-bearing nude mice. Following the intravenous administration of biomimetic liposome nanomedicine, the tumor inhibition rate reached up to 93.3%, which was significantly higher when compared to that of conventional liposome nanomedicine (69.3%). Moreover, histopathological analyses demonstrated that biomimetic liposome nanomedicine has limited side effects. Therefore, these results suggested that a cancer cell membrane-based biomimetic strategy may provide a breakthrough approach for enhancing drug penetration and improving treatment efficacy, holding a great promise for further clinical studies.</description><subject>Accumulation</subject><subject>Animals</subject><subject>Antibiotics, Antineoplastic - administration &amp; dosage</subject><subject>Antibiotics, Antineoplastic - pharmacokinetics</subject><subject>Antibiotics, Antineoplastic - therapeutic use</subject><subject>Biomimetic Materials - metabolism</subject><subject>Biomimetics</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Chemotherapy</subject><subject>Doxorubicin - administration &amp; dosage</subject><subject>Doxorubicin - pharmacokinetics</subject><subject>Doxorubicin - therapeutic use</subject><subject>Effectiveness</subject><subject>Fluorescence</subject><subject>Glioma - drug therapy</subject><subject>Glioma - pathology</subject><subject>Homology</subject><subject>Humans</subject><subject>Liposomes</subject><subject>Liposomes - metabolism</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Nanomedicine</subject><subject>Penetration</subject><subject>Proteins</subject><subject>Side effects</subject><subject>Spheroids</subject><subject>Strategy</subject><subject>Tumors</subject><issn>2047-4830</issn><issn>2047-4849</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kFFLwzAQx4Mobsy9-AEk4JtQTZo0aR51qBMmvuhzSdJ0zWibmrRCv72Zm7uX_x387g5-AFxjdI8REQ86Vy1CacbqMzBPEeUJzak4P_UEzcAyhB2KxblADF-CWSqYoJTTOWjWdls3E-xNZwYvB_tjYGN7F1xrYCe7GKXVtjNwG4kImBKqCUqorGttawarYdgvmu0EK-eh6WrZ6UjpfXioa9O6oY6r_XQFLirZBLM85gJ8vTx_rtbJ5uP1bfW4STTB2ZBkOOcKa85ZVSqB0jgaJlNdUsWxUFSQShGqCWIiojQlmimayYrLMpUC5WQBbg93e---RxOGYudG38WXRbTCCBWY40jdHSjtXQjeVEXvbSv9VGBU7N0Wq_zp_c_tOsI3x5OjikpO6L9J8gvF7HUV</recordid><startdate>20180529</startdate><enddate>20180529</enddate><creator>Jia, Yali</creator><creator>Sheng, Zonghai</creator><creator>Hu, Dehong</creator><creator>Yan, Fei</creator><creator>Zhu, Mingting</creator><creator>Gao, Guanhui</creator><creator>Wang, Pan</creator><creator>Liu, Xin</creator><creator>Wang, Xiaobing</creator><creator>Zheng, Hairong</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3569-3938</orcidid><orcidid>https://orcid.org/0000-0001-5868-8037</orcidid></search><sort><creationdate>20180529</creationdate><title>Highly penetrative liposome nanomedicine generated by a biomimetic strategy for enhanced cancer chemotherapy</title><author>Jia, Yali ; Sheng, Zonghai ; Hu, Dehong ; Yan, Fei ; Zhu, Mingting ; Gao, Guanhui ; Wang, Pan ; Liu, Xin ; Wang, Xiaobing ; Zheng, Hairong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-5187b1c776fdb902187e6a2cd4b719b493fb34c3069518423c6b45af7ad2a9083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Animals</topic><topic>Antibiotics, Antineoplastic - administration &amp; dosage</topic><topic>Antibiotics, Antineoplastic - pharmacokinetics</topic><topic>Antibiotics, Antineoplastic - therapeutic use</topic><topic>Biomimetic Materials - metabolism</topic><topic>Biomimetics</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Chemotherapy</topic><topic>Doxorubicin - administration &amp; dosage</topic><topic>Doxorubicin - pharmacokinetics</topic><topic>Doxorubicin - therapeutic use</topic><topic>Effectiveness</topic><topic>Fluorescence</topic><topic>Glioma - drug therapy</topic><topic>Glioma - pathology</topic><topic>Homology</topic><topic>Humans</topic><topic>Liposomes</topic><topic>Liposomes - metabolism</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Nanomedicine</topic><topic>Penetration</topic><topic>Proteins</topic><topic>Side effects</topic><topic>Spheroids</topic><topic>Strategy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Yali</creatorcontrib><creatorcontrib>Sheng, Zonghai</creatorcontrib><creatorcontrib>Hu, Dehong</creatorcontrib><creatorcontrib>Yan, Fei</creatorcontrib><creatorcontrib>Zhu, Mingting</creatorcontrib><creatorcontrib>Gao, Guanhui</creatorcontrib><creatorcontrib>Wang, Pan</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Wang, Xiaobing</creatorcontrib><creatorcontrib>Zheng, Hairong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Biomaterials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Yali</au><au>Sheng, Zonghai</au><au>Hu, Dehong</au><au>Yan, Fei</au><au>Zhu, Mingting</au><au>Gao, Guanhui</au><au>Wang, Pan</au><au>Liu, Xin</au><au>Wang, Xiaobing</au><au>Zheng, Hairong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly penetrative liposome nanomedicine generated by a biomimetic strategy for enhanced cancer chemotherapy</atitle><jtitle>Biomaterials science</jtitle><addtitle>Biomater Sci</addtitle><date>2018-05-29</date><risdate>2018</risdate><volume>6</volume><issue>6</issue><spage>1546</spage><epage>1555</epage><pages>1546-1555</pages><issn>2047-4830</issn><eissn>2047-4849</eissn><abstract>Liposome nanomedicine has been successfully applied for cancer chemotherapy in patients. However, in general, the therapeutic efficacy is confined by its limited accumulation and penetration in solid tumors. Here, we established a biomimetic strategy for the preparation of highly penetrative liposome nanomedicine for enhanced chemotherapeutic efficacy. By applying this unique type of nanomedicine, membrane proteins on the cancer cells are used as highly penetrative targeting ligands. Biomimetic liposomes are highly stable, exhibiting a superior in vitro homologous targeting ability, and a 2.25-fold deeper penetration in 3D tumor spheroids when compared to conventional liposome nanomedicine. The fluorescence/photoacoustic dual-modal imaging approach demonstrated enhanced tumor accumulation and improved tumor penetration of the biomimetic liposome in C6 glioma tumor-bearing nude mice. Following the intravenous administration of biomimetic liposome nanomedicine, the tumor inhibition rate reached up to 93.3%, which was significantly higher when compared to that of conventional liposome nanomedicine (69.3%). Moreover, histopathological analyses demonstrated that biomimetic liposome nanomedicine has limited side effects. Therefore, these results suggested that a cancer cell membrane-based biomimetic strategy may provide a breakthrough approach for enhancing drug penetration and improving treatment efficacy, holding a great promise for further clinical studies.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29694474</pmid><doi>10.1039/c8bm00256h</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3569-3938</orcidid><orcidid>https://orcid.org/0000-0001-5868-8037</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2047-4830
ispartof Biomaterials science, 2018-05, Vol.6 (6), p.1546-1555
issn 2047-4830
2047-4849
language eng
recordid cdi_proquest_journals_2046349171
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Accumulation
Animals
Antibiotics, Antineoplastic - administration & dosage
Antibiotics, Antineoplastic - pharmacokinetics
Antibiotics, Antineoplastic - therapeutic use
Biomimetic Materials - metabolism
Biomimetics
Cancer
Cell Line, Tumor
Chemotherapy
Doxorubicin - administration & dosage
Doxorubicin - pharmacokinetics
Doxorubicin - therapeutic use
Effectiveness
Fluorescence
Glioma - drug therapy
Glioma - pathology
Homology
Humans
Liposomes
Liposomes - metabolism
Mice, Inbred BALB C
Mice, Nude
Nanomedicine
Penetration
Proteins
Side effects
Spheroids
Strategy
Tumors
title Highly penetrative liposome nanomedicine generated by a biomimetic strategy for enhanced cancer chemotherapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20penetrative%20liposome%20nanomedicine%20generated%20by%20a%20biomimetic%20strategy%20for%20enhanced%20cancer%20chemotherapy&rft.jtitle=Biomaterials%20science&rft.au=Jia,%20Yali&rft.date=2018-05-29&rft.volume=6&rft.issue=6&rft.spage=1546&rft.epage=1555&rft.pages=1546-1555&rft.issn=2047-4830&rft.eissn=2047-4849&rft_id=info:doi/10.1039/c8bm00256h&rft_dat=%3Cproquest_cross%3E2046349171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2046349171&rft_id=info:pmid/29694474&rfr_iscdi=true