Expected Value and the Wheel of Fortune Game

Presents two methods of calculating the expected value for a participant on the television game show "The Wheel of Fortune." The first approach involves the use of basic expected-value principles. The second approach uses those principles in addition to infinite geometric series. (MDH)

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Mathematics teacher 1994-01, Vol.87 (1), p.13-17
Hauptverfasser: Woodward, Ernest, Woodward, Marilyn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 13
container_title The Mathematics teacher
container_volume 87
creator Woodward, Ernest
Woodward, Marilyn
description Presents two methods of calculating the expected value for a participant on the television game show "The Wheel of Fortune." The first approach involves the use of basic expected-value principles. The second approach uses those principles in addition to infinite geometric series. (MDH)
doi_str_mv 10.5951/MT.87.1.0013
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_204613986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ480186</ericid><jstor_id>27968701</jstor_id><sourcerecordid>27968701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1786-314624afc3f120be6dd3169a09d63a4f4c64bba344568548a3ebdd364da784493</originalsourceid><addsrcrecordid>eNp1kM1Lw0AUxBdRsFZvHhUWvTZxvz-OUtKqtHipelw2yQttaZu6SUD_e7dGevNd5jC_eQOD0DUlqbSSPswXqdEpTQmh_AQNGOckIdKwUzQghMlEamXP0UXTrEk8YcgAjbKvPRQtlPjdbzrAflfidgn4YwmwwXWFJ3Voux3gqd_CJTqr_KaBqz8dordJthg_JbPX6fP4cZYUVBuVcCoUE74qeEUZyUGVJafKemJLxb2oRKFEnnsuhFRGCuM55BFRovTaCGH5EN31f_eh_uygad267sIuVjpGhKLcGhWh-_8gari1TLKoQzTqqSLUTROgcvuw2vrw7Shxh9HcfOGMdtQdRov4TY9DWBVHNHuJW9HfztveXjdtHY4-01YZHfM_Rppt3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204613986</pqid></control><display><type>article</type><title>Expected Value and the Wheel of Fortune Game</title><source>JSTOR Mathematics and Statistics</source><source>JSTOR</source><source>Periodicals Index Online</source><creator>Woodward, Ernest ; Woodward, Marilyn</creator><creatorcontrib>Woodward, Ernest ; Woodward, Marilyn</creatorcontrib><description>Presents two methods of calculating the expected value for a participant on the television game show "The Wheel of Fortune." The first approach involves the use of basic expected-value principles. The second approach uses those principles in addition to infinite geometric series. (MDH)</description><identifier>ISSN: 0025-5769</identifier><identifier>EISSN: 2330-0582</identifier><identifier>DOI: 10.5951/MT.87.1.0013</identifier><identifier>CODEN: MATAAP</identifier><language>eng</language><publisher>Reston: National Council of Teachers of Mathematics</publisher><subject>Bankruptcy ; College mathematics ; Consonants ; Educational research ; Enrichment Activities ; Expected values ; Games ; Logical givens ; Mathematical Applications ; Mathematical Concepts ; Mathematical Enrichment ; Mathematical Formulas ; Mathematical integration ; Mathematical Models ; Mathematics Education ; Mathematics Instruction ; Probability ; Puzzles ; Secondary Education ; Secondary School Mathematics ; Series (Mathematics) ; Statistics</subject><ispartof>The Mathematics teacher, 1994-01, Vol.87 (1), p.13-17</ispartof><rights>Copyright © 1993 The National Council of Teachers of Mathematics, Inc.</rights><rights>Copyright National Council of Teachers of Mathematics Jan 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1786-314624afc3f120be6dd3169a09d63a4f4c64bba344568548a3ebdd364da784493</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27968701$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27968701$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,4009,27848,27902,27903,27904,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ480186$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Woodward, Ernest</creatorcontrib><creatorcontrib>Woodward, Marilyn</creatorcontrib><title>Expected Value and the Wheel of Fortune Game</title><title>The Mathematics teacher</title><description>Presents two methods of calculating the expected value for a participant on the television game show "The Wheel of Fortune." The first approach involves the use of basic expected-value principles. The second approach uses those principles in addition to infinite geometric series. (MDH)</description><subject>Bankruptcy</subject><subject>College mathematics</subject><subject>Consonants</subject><subject>Educational research</subject><subject>Enrichment Activities</subject><subject>Expected values</subject><subject>Games</subject><subject>Logical givens</subject><subject>Mathematical Applications</subject><subject>Mathematical Concepts</subject><subject>Mathematical Enrichment</subject><subject>Mathematical Formulas</subject><subject>Mathematical integration</subject><subject>Mathematical Models</subject><subject>Mathematics Education</subject><subject>Mathematics Instruction</subject><subject>Probability</subject><subject>Puzzles</subject><subject>Secondary Education</subject><subject>Secondary School Mathematics</subject><subject>Series (Mathematics)</subject><subject>Statistics</subject><issn>0025-5769</issn><issn>2330-0582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1Lw0AUxBdRsFZvHhUWvTZxvz-OUtKqtHipelw2yQttaZu6SUD_e7dGevNd5jC_eQOD0DUlqbSSPswXqdEpTQmh_AQNGOckIdKwUzQghMlEamXP0UXTrEk8YcgAjbKvPRQtlPjdbzrAflfidgn4YwmwwXWFJ3Voux3gqd_CJTqr_KaBqz8dordJthg_JbPX6fP4cZYUVBuVcCoUE74qeEUZyUGVJafKemJLxb2oRKFEnnsuhFRGCuM55BFRovTaCGH5EN31f_eh_uygad267sIuVjpGhKLcGhWh-_8gari1TLKoQzTqqSLUTROgcvuw2vrw7Shxh9HcfOGMdtQdRov4TY9DWBVHNHuJW9HfztveXjdtHY4-01YZHfM_Rppt3g</recordid><startdate>19940101</startdate><enddate>19940101</enddate><creator>Woodward, Ernest</creator><creator>Woodward, Marilyn</creator><general>National Council of Teachers of Mathematics</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7WH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>8A4</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M0P</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19940101</creationdate><title>Expected Value and the Wheel of Fortune Game</title><author>Woodward, Ernest ; Woodward, Marilyn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1786-314624afc3f120be6dd3169a09d63a4f4c64bba344568548a3ebdd364da784493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Bankruptcy</topic><topic>College mathematics</topic><topic>Consonants</topic><topic>Educational research</topic><topic>Enrichment Activities</topic><topic>Expected values</topic><topic>Games</topic><topic>Logical givens</topic><topic>Mathematical Applications</topic><topic>Mathematical Concepts</topic><topic>Mathematical Enrichment</topic><topic>Mathematical Formulas</topic><topic>Mathematical integration</topic><topic>Mathematical Models</topic><topic>Mathematics Education</topic><topic>Mathematics Instruction</topic><topic>Probability</topic><topic>Puzzles</topic><topic>Secondary Education</topic><topic>Secondary School Mathematics</topic><topic>Series (Mathematics)</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woodward, Ernest</creatorcontrib><creatorcontrib>Woodward, Marilyn</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 50</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Education Periodicals</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Education Database</collection><collection>Research Library</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>The Mathematics teacher</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woodward, Ernest</au><au>Woodward, Marilyn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ480186</ericid><atitle>Expected Value and the Wheel of Fortune Game</atitle><jtitle>The Mathematics teacher</jtitle><date>1994-01-01</date><risdate>1994</risdate><volume>87</volume><issue>1</issue><spage>13</spage><epage>17</epage><pages>13-17</pages><issn>0025-5769</issn><eissn>2330-0582</eissn><coden>MATAAP</coden><abstract>Presents two methods of calculating the expected value for a participant on the television game show "The Wheel of Fortune." The first approach involves the use of basic expected-value principles. The second approach uses those principles in addition to infinite geometric series. (MDH)</abstract><cop>Reston</cop><pub>National Council of Teachers of Mathematics</pub><doi>10.5951/MT.87.1.0013</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5769
ispartof The Mathematics teacher, 1994-01, Vol.87 (1), p.13-17
issn 0025-5769
2330-0582
language eng
recordid cdi_proquest_journals_204613986
source JSTOR Mathematics and Statistics; JSTOR; Periodicals Index Online
subjects Bankruptcy
College mathematics
Consonants
Educational research
Enrichment Activities
Expected values
Games
Logical givens
Mathematical Applications
Mathematical Concepts
Mathematical Enrichment
Mathematical Formulas
Mathematical integration
Mathematical Models
Mathematics Education
Mathematics Instruction
Probability
Puzzles
Secondary Education
Secondary School Mathematics
Series (Mathematics)
Statistics
title Expected Value and the Wheel of Fortune Game
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expected%20Value%20and%20the%20Wheel%20of%20Fortune%20Game&rft.jtitle=The%20Mathematics%20teacher&rft.au=Woodward,%20Ernest&rft.date=1994-01-01&rft.volume=87&rft.issue=1&rft.spage=13&rft.epage=17&rft.pages=13-17&rft.issn=0025-5769&rft.eissn=2330-0582&rft.coden=MATAAP&rft_id=info:doi/10.5951/MT.87.1.0013&rft_dat=%3Cjstor_proqu%3E27968701%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204613986&rft_id=info:pmid/&rft_ericid=EJ480186&rft_jstor_id=27968701&rfr_iscdi=true