Expected Value and the Wheel of Fortune Game
Presents two methods of calculating the expected value for a participant on the television game show "The Wheel of Fortune." The first approach involves the use of basic expected-value principles. The second approach uses those principles in addition to infinite geometric series. (MDH)
Gespeichert in:
Veröffentlicht in: | The Mathematics teacher 1994-01, Vol.87 (1), p.13-17 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 13 |
container_title | The Mathematics teacher |
container_volume | 87 |
creator | Woodward, Ernest Woodward, Marilyn |
description | Presents two methods of calculating the expected value for a participant on the television game show "The Wheel of Fortune." The first approach involves the use of basic expected-value principles. The second approach uses those principles in addition to infinite geometric series. (MDH) |
doi_str_mv | 10.5951/MT.87.1.0013 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_204613986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ480186</ericid><jstor_id>27968701</jstor_id><sourcerecordid>27968701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1786-314624afc3f120be6dd3169a09d63a4f4c64bba344568548a3ebdd364da784493</originalsourceid><addsrcrecordid>eNp1kM1Lw0AUxBdRsFZvHhUWvTZxvz-OUtKqtHipelw2yQttaZu6SUD_e7dGevNd5jC_eQOD0DUlqbSSPswXqdEpTQmh_AQNGOckIdKwUzQghMlEamXP0UXTrEk8YcgAjbKvPRQtlPjdbzrAflfidgn4YwmwwXWFJ3Voux3gqd_CJTqr_KaBqz8dordJthg_JbPX6fP4cZYUVBuVcCoUE74qeEUZyUGVJafKemJLxb2oRKFEnnsuhFRGCuM55BFRovTaCGH5EN31f_eh_uygad267sIuVjpGhKLcGhWh-_8gari1TLKoQzTqqSLUTROgcvuw2vrw7Shxh9HcfOGMdtQdRov4TY9DWBVHNHuJW9HfztveXjdtHY4-01YZHfM_Rppt3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204613986</pqid></control><display><type>article</type><title>Expected Value and the Wheel of Fortune Game</title><source>JSTOR Mathematics and Statistics</source><source>JSTOR</source><source>Periodicals Index Online</source><creator>Woodward, Ernest ; Woodward, Marilyn</creator><creatorcontrib>Woodward, Ernest ; Woodward, Marilyn</creatorcontrib><description>Presents two methods of calculating the expected value for a participant on the television game show "The Wheel of Fortune." The first approach involves the use of basic expected-value principles. The second approach uses those principles in addition to infinite geometric series. (MDH)</description><identifier>ISSN: 0025-5769</identifier><identifier>EISSN: 2330-0582</identifier><identifier>DOI: 10.5951/MT.87.1.0013</identifier><identifier>CODEN: MATAAP</identifier><language>eng</language><publisher>Reston: National Council of Teachers of Mathematics</publisher><subject>Bankruptcy ; College mathematics ; Consonants ; Educational research ; Enrichment Activities ; Expected values ; Games ; Logical givens ; Mathematical Applications ; Mathematical Concepts ; Mathematical Enrichment ; Mathematical Formulas ; Mathematical integration ; Mathematical Models ; Mathematics Education ; Mathematics Instruction ; Probability ; Puzzles ; Secondary Education ; Secondary School Mathematics ; Series (Mathematics) ; Statistics</subject><ispartof>The Mathematics teacher, 1994-01, Vol.87 (1), p.13-17</ispartof><rights>Copyright © 1993 The National Council of Teachers of Mathematics, Inc.</rights><rights>Copyright National Council of Teachers of Mathematics Jan 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1786-314624afc3f120be6dd3169a09d63a4f4c64bba344568548a3ebdd364da784493</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27968701$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27968701$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,4009,27848,27902,27903,27904,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ480186$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Woodward, Ernest</creatorcontrib><creatorcontrib>Woodward, Marilyn</creatorcontrib><title>Expected Value and the Wheel of Fortune Game</title><title>The Mathematics teacher</title><description>Presents two methods of calculating the expected value for a participant on the television game show "The Wheel of Fortune." The first approach involves the use of basic expected-value principles. The second approach uses those principles in addition to infinite geometric series. (MDH)</description><subject>Bankruptcy</subject><subject>College mathematics</subject><subject>Consonants</subject><subject>Educational research</subject><subject>Enrichment Activities</subject><subject>Expected values</subject><subject>Games</subject><subject>Logical givens</subject><subject>Mathematical Applications</subject><subject>Mathematical Concepts</subject><subject>Mathematical Enrichment</subject><subject>Mathematical Formulas</subject><subject>Mathematical integration</subject><subject>Mathematical Models</subject><subject>Mathematics Education</subject><subject>Mathematics Instruction</subject><subject>Probability</subject><subject>Puzzles</subject><subject>Secondary Education</subject><subject>Secondary School Mathematics</subject><subject>Series (Mathematics)</subject><subject>Statistics</subject><issn>0025-5769</issn><issn>2330-0582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1Lw0AUxBdRsFZvHhUWvTZxvz-OUtKqtHipelw2yQttaZu6SUD_e7dGevNd5jC_eQOD0DUlqbSSPswXqdEpTQmh_AQNGOckIdKwUzQghMlEamXP0UXTrEk8YcgAjbKvPRQtlPjdbzrAflfidgn4YwmwwXWFJ3Voux3gqd_CJTqr_KaBqz8dordJthg_JbPX6fP4cZYUVBuVcCoUE74qeEUZyUGVJafKemJLxb2oRKFEnnsuhFRGCuM55BFRovTaCGH5EN31f_eh_uygad267sIuVjpGhKLcGhWh-_8gari1TLKoQzTqqSLUTROgcvuw2vrw7Shxh9HcfOGMdtQdRov4TY9DWBVHNHuJW9HfztveXjdtHY4-01YZHfM_Rppt3g</recordid><startdate>19940101</startdate><enddate>19940101</enddate><creator>Woodward, Ernest</creator><creator>Woodward, Marilyn</creator><general>National Council of Teachers of Mathematics</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7WH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>8A4</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M0P</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19940101</creationdate><title>Expected Value and the Wheel of Fortune Game</title><author>Woodward, Ernest ; Woodward, Marilyn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1786-314624afc3f120be6dd3169a09d63a4f4c64bba344568548a3ebdd364da784493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Bankruptcy</topic><topic>College mathematics</topic><topic>Consonants</topic><topic>Educational research</topic><topic>Enrichment Activities</topic><topic>Expected values</topic><topic>Games</topic><topic>Logical givens</topic><topic>Mathematical Applications</topic><topic>Mathematical Concepts</topic><topic>Mathematical Enrichment</topic><topic>Mathematical Formulas</topic><topic>Mathematical integration</topic><topic>Mathematical Models</topic><topic>Mathematics Education</topic><topic>Mathematics Instruction</topic><topic>Probability</topic><topic>Puzzles</topic><topic>Secondary Education</topic><topic>Secondary School Mathematics</topic><topic>Series (Mathematics)</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woodward, Ernest</creatorcontrib><creatorcontrib>Woodward, Marilyn</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 50</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Education Periodicals</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Education Database</collection><collection>Research Library</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>The Mathematics teacher</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woodward, Ernest</au><au>Woodward, Marilyn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ480186</ericid><atitle>Expected Value and the Wheel of Fortune Game</atitle><jtitle>The Mathematics teacher</jtitle><date>1994-01-01</date><risdate>1994</risdate><volume>87</volume><issue>1</issue><spage>13</spage><epage>17</epage><pages>13-17</pages><issn>0025-5769</issn><eissn>2330-0582</eissn><coden>MATAAP</coden><abstract>Presents two methods of calculating the expected value for a participant on the television game show "The Wheel of Fortune." The first approach involves the use of basic expected-value principles. The second approach uses those principles in addition to infinite geometric series. (MDH)</abstract><cop>Reston</cop><pub>National Council of Teachers of Mathematics</pub><doi>10.5951/MT.87.1.0013</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5769 |
ispartof | The Mathematics teacher, 1994-01, Vol.87 (1), p.13-17 |
issn | 0025-5769 2330-0582 |
language | eng |
recordid | cdi_proquest_journals_204613986 |
source | JSTOR Mathematics and Statistics; JSTOR; Periodicals Index Online |
subjects | Bankruptcy College mathematics Consonants Educational research Enrichment Activities Expected values Games Logical givens Mathematical Applications Mathematical Concepts Mathematical Enrichment Mathematical Formulas Mathematical integration Mathematical Models Mathematics Education Mathematics Instruction Probability Puzzles Secondary Education Secondary School Mathematics Series (Mathematics) Statistics |
title | Expected Value and the Wheel of Fortune Game |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expected%20Value%20and%20the%20Wheel%20of%20Fortune%20Game&rft.jtitle=The%20Mathematics%20teacher&rft.au=Woodward,%20Ernest&rft.date=1994-01-01&rft.volume=87&rft.issue=1&rft.spage=13&rft.epage=17&rft.pages=13-17&rft.issn=0025-5769&rft.eissn=2330-0582&rft.coden=MATAAP&rft_id=info:doi/10.5951/MT.87.1.0013&rft_dat=%3Cjstor_proqu%3E27968701%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204613986&rft_id=info:pmid/&rft_ericid=EJ480186&rft_jstor_id=27968701&rfr_iscdi=true |