A Lightweight Surface Reconstruction Method for Online 3D Scanning Point Cloud Data Oriented toward 3D Printing
The existing surface reconstruction algorithms currently reconstruct large amounts of mesh data. Consequently, many of these algorithms cannot meet the efficiency requirements of real-time data transmission in a web environment. This paper proposes a lightweight surface reconstruction method for onl...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-16 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2018 |
creator | Wang, Hui Zhang, Chenglei Yin, Xiyan Zhao, Feiyu Sheng, Buyun Huang, Peide |
description | The existing surface reconstruction algorithms currently reconstruct large amounts of mesh data. Consequently, many of these algorithms cannot meet the efficiency requirements of real-time data transmission in a web environment. This paper proposes a lightweight surface reconstruction method for online 3D scanned point cloud data oriented toward 3D printing. The proposed online lightweight surface reconstruction algorithm is composed of a point cloud update algorithm (PCU), a rapid iterative closest point algorithm (RICP), and an improved Poisson surface reconstruction algorithm (IPSR). The generated lightweight point cloud data are pretreated using an updating and rapid registration method. The Poisson surface reconstruction is also accomplished by a pretreatment to recompute the point cloud normal vectors; this approach is based on a least squares method, and the postprocessing of the PDE patch generation was based on biharmonic-like fourth-order PDEs, which effectively reduces the amount of reconstructed mesh data and improves the efficiency of the algorithm. This method was verified using an online personalized customization system that was developed with WebGL and oriented toward 3D printing. The experimental results indicate that this method can generate a lightweight 3D scanning mesh rapidly and efficiently in a web environment. |
doi_str_mv | 10.1155/2018/4673849 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2045195512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2045195512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-49836c7893cde045f614db82e4cdbdf7616c6a7ca84a47909afb3c66db4d71473</originalsourceid><addsrcrecordid>eNqF0E1LAzEQBuAgCtbqzbMEPOraZPO1eyytX1BpsQrelmySbVNqUrNZiv_eLBU8epmZw8MM8wJwidEdxoyNcoSLEeWCFLQ8AgPMOMkYpuI4zSinGc7Jxyk4a9sNQjlmuBgAP4Yzu1rHvekrXHahkcrAV6O8a2PoVLTewRcT117Dxgc4d1vrDCRTuFTSOetWcOGti3Cy9Z2GUxklnAdrXDQaRr-XQfd4EZJJ-BycNHLbmovfPgTvD_dvk6dsNn98noxnmSIcxYyWBeFKFCVR2iDKGo6provcUKVr3QiOueJSKFlQSUWJStnURHGua6pF-pgMwfVh7y74r860sdr4Lrh0ssrTPlwyltIYgtuDUsG3bTBNtQv2U4bvCqOqj7TqI61-I0385sDX1mm5t__pq4M2yZhG_ukcCSYo-QHH8n-X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2045195512</pqid></control><display><type>article</type><title>A Lightweight Surface Reconstruction Method for Online 3D Scanning Point Cloud Data Oriented toward 3D Printing</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Wang, Hui ; Zhang, Chenglei ; Yin, Xiyan ; Zhao, Feiyu ; Sheng, Buyun ; Huang, Peide</creator><contributor>Barbu, Tudor ; Tudor Barbu</contributor><creatorcontrib>Wang, Hui ; Zhang, Chenglei ; Yin, Xiyan ; Zhao, Feiyu ; Sheng, Buyun ; Huang, Peide ; Barbu, Tudor ; Tudor Barbu</creatorcontrib><description>The existing surface reconstruction algorithms currently reconstruct large amounts of mesh data. Consequently, many of these algorithms cannot meet the efficiency requirements of real-time data transmission in a web environment. This paper proposes a lightweight surface reconstruction method for online 3D scanned point cloud data oriented toward 3D printing. The proposed online lightweight surface reconstruction algorithm is composed of a point cloud update algorithm (PCU), a rapid iterative closest point algorithm (RICP), and an improved Poisson surface reconstruction algorithm (IPSR). The generated lightweight point cloud data are pretreated using an updating and rapid registration method. The Poisson surface reconstruction is also accomplished by a pretreatment to recompute the point cloud normal vectors; this approach is based on a least squares method, and the postprocessing of the PDE patch generation was based on biharmonic-like fourth-order PDEs, which effectively reduces the amount of reconstructed mesh data and improves the efficiency of the algorithm. This method was verified using an online personalized customization system that was developed with WebGL and oriented toward 3D printing. The experimental results indicate that this method can generate a lightweight 3D scanning mesh rapidly and efficiently in a web environment.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2018/4673849</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>3-D printers ; Algorithms ; Cloud computing ; Computer graphics ; Data transmission ; Engineering ; Least squares method ; Lightweight ; Mathematical problems ; On-line systems ; Pretreatment ; Product development ; Rapid prototyping ; Reconstruction ; Registration ; Scanners ; Scanning ; Three dimensional models ; Three dimensional printing ; Visualization ; Weight reduction</subject><ispartof>Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-16</ispartof><rights>Copyright © 2018 Buyun Sheng et al.</rights><rights>Copyright © 2018 Buyun Sheng et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-49836c7893cde045f614db82e4cdbdf7616c6a7ca84a47909afb3c66db4d71473</citedby><cites>FETCH-LOGICAL-c360t-49836c7893cde045f614db82e4cdbdf7616c6a7ca84a47909afb3c66db4d71473</cites><orcidid>0000-0002-5747-7614 ; 0000-0001-7469-8358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Barbu, Tudor</contributor><contributor>Tudor Barbu</contributor><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Zhang, Chenglei</creatorcontrib><creatorcontrib>Yin, Xiyan</creatorcontrib><creatorcontrib>Zhao, Feiyu</creatorcontrib><creatorcontrib>Sheng, Buyun</creatorcontrib><creatorcontrib>Huang, Peide</creatorcontrib><title>A Lightweight Surface Reconstruction Method for Online 3D Scanning Point Cloud Data Oriented toward 3D Printing</title><title>Mathematical problems in engineering</title><description>The existing surface reconstruction algorithms currently reconstruct large amounts of mesh data. Consequently, many of these algorithms cannot meet the efficiency requirements of real-time data transmission in a web environment. This paper proposes a lightweight surface reconstruction method for online 3D scanned point cloud data oriented toward 3D printing. The proposed online lightweight surface reconstruction algorithm is composed of a point cloud update algorithm (PCU), a rapid iterative closest point algorithm (RICP), and an improved Poisson surface reconstruction algorithm (IPSR). The generated lightweight point cloud data are pretreated using an updating and rapid registration method. The Poisson surface reconstruction is also accomplished by a pretreatment to recompute the point cloud normal vectors; this approach is based on a least squares method, and the postprocessing of the PDE patch generation was based on biharmonic-like fourth-order PDEs, which effectively reduces the amount of reconstructed mesh data and improves the efficiency of the algorithm. This method was verified using an online personalized customization system that was developed with WebGL and oriented toward 3D printing. The experimental results indicate that this method can generate a lightweight 3D scanning mesh rapidly and efficiently in a web environment.</description><subject>3-D printers</subject><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Computer graphics</subject><subject>Data transmission</subject><subject>Engineering</subject><subject>Least squares method</subject><subject>Lightweight</subject><subject>Mathematical problems</subject><subject>On-line systems</subject><subject>Pretreatment</subject><subject>Product development</subject><subject>Rapid prototyping</subject><subject>Reconstruction</subject><subject>Registration</subject><subject>Scanners</subject><subject>Scanning</subject><subject>Three dimensional models</subject><subject>Three dimensional printing</subject><subject>Visualization</subject><subject>Weight reduction</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1LAzEQBuAgCtbqzbMEPOraZPO1eyytX1BpsQrelmySbVNqUrNZiv_eLBU8epmZw8MM8wJwidEdxoyNcoSLEeWCFLQ8AgPMOMkYpuI4zSinGc7Jxyk4a9sNQjlmuBgAP4Yzu1rHvekrXHahkcrAV6O8a2PoVLTewRcT117Dxgc4d1vrDCRTuFTSOetWcOGti3Cy9Z2GUxklnAdrXDQaRr-XQfd4EZJJ-BycNHLbmovfPgTvD_dvk6dsNn98noxnmSIcxYyWBeFKFCVR2iDKGo6provcUKVr3QiOueJSKFlQSUWJStnURHGua6pF-pgMwfVh7y74r860sdr4Lrh0ssrTPlwyltIYgtuDUsG3bTBNtQv2U4bvCqOqj7TqI61-I0385sDX1mm5t__pq4M2yZhG_ukcCSYo-QHH8n-X</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wang, Hui</creator><creator>Zhang, Chenglei</creator><creator>Yin, Xiyan</creator><creator>Zhao, Feiyu</creator><creator>Sheng, Buyun</creator><creator>Huang, Peide</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5747-7614</orcidid><orcidid>https://orcid.org/0000-0001-7469-8358</orcidid></search><sort><creationdate>20180101</creationdate><title>A Lightweight Surface Reconstruction Method for Online 3D Scanning Point Cloud Data Oriented toward 3D Printing</title><author>Wang, Hui ; Zhang, Chenglei ; Yin, Xiyan ; Zhao, Feiyu ; Sheng, Buyun ; Huang, Peide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-49836c7893cde045f614db82e4cdbdf7616c6a7ca84a47909afb3c66db4d71473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3-D printers</topic><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Computer graphics</topic><topic>Data transmission</topic><topic>Engineering</topic><topic>Least squares method</topic><topic>Lightweight</topic><topic>Mathematical problems</topic><topic>On-line systems</topic><topic>Pretreatment</topic><topic>Product development</topic><topic>Rapid prototyping</topic><topic>Reconstruction</topic><topic>Registration</topic><topic>Scanners</topic><topic>Scanning</topic><topic>Three dimensional models</topic><topic>Three dimensional printing</topic><topic>Visualization</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Zhang, Chenglei</creatorcontrib><creatorcontrib>Yin, Xiyan</creatorcontrib><creatorcontrib>Zhao, Feiyu</creatorcontrib><creatorcontrib>Sheng, Buyun</creatorcontrib><creatorcontrib>Huang, Peide</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hui</au><au>Zhang, Chenglei</au><au>Yin, Xiyan</au><au>Zhao, Feiyu</au><au>Sheng, Buyun</au><au>Huang, Peide</au><au>Barbu, Tudor</au><au>Tudor Barbu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lightweight Surface Reconstruction Method for Online 3D Scanning Point Cloud Data Oriented toward 3D Printing</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The existing surface reconstruction algorithms currently reconstruct large amounts of mesh data. Consequently, many of these algorithms cannot meet the efficiency requirements of real-time data transmission in a web environment. This paper proposes a lightweight surface reconstruction method for online 3D scanned point cloud data oriented toward 3D printing. The proposed online lightweight surface reconstruction algorithm is composed of a point cloud update algorithm (PCU), a rapid iterative closest point algorithm (RICP), and an improved Poisson surface reconstruction algorithm (IPSR). The generated lightweight point cloud data are pretreated using an updating and rapid registration method. The Poisson surface reconstruction is also accomplished by a pretreatment to recompute the point cloud normal vectors; this approach is based on a least squares method, and the postprocessing of the PDE patch generation was based on biharmonic-like fourth-order PDEs, which effectively reduces the amount of reconstructed mesh data and improves the efficiency of the algorithm. This method was verified using an online personalized customization system that was developed with WebGL and oriented toward 3D printing. The experimental results indicate that this method can generate a lightweight 3D scanning mesh rapidly and efficiently in a web environment.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/4673849</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5747-7614</orcidid><orcidid>https://orcid.org/0000-0001-7469-8358</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-16 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2045195512 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection |
subjects | 3-D printers Algorithms Cloud computing Computer graphics Data transmission Engineering Least squares method Lightweight Mathematical problems On-line systems Pretreatment Product development Rapid prototyping Reconstruction Registration Scanners Scanning Three dimensional models Three dimensional printing Visualization Weight reduction |
title | A Lightweight Surface Reconstruction Method for Online 3D Scanning Point Cloud Data Oriented toward 3D Printing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lightweight%20Surface%20Reconstruction%20Method%20for%20Online%203D%20Scanning%20Point%20Cloud%20Data%20Oriented%20toward%203D%20Printing&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Wang,%20Hui&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2018/4673849&rft_dat=%3Cproquest_cross%3E2045195512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2045195512&rft_id=info:pmid/&rfr_iscdi=true |