A Lightweight Surface Reconstruction Method for Online 3D Scanning Point Cloud Data Oriented toward 3D Printing

The existing surface reconstruction algorithms currently reconstruct large amounts of mesh data. Consequently, many of these algorithms cannot meet the efficiency requirements of real-time data transmission in a web environment. This paper proposes a lightweight surface reconstruction method for onl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-16
Hauptverfasser: Wang, Hui, Zhang, Chenglei, Yin, Xiyan, Zhao, Feiyu, Sheng, Buyun, Huang, Peide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 2018
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2018
creator Wang, Hui
Zhang, Chenglei
Yin, Xiyan
Zhao, Feiyu
Sheng, Buyun
Huang, Peide
description The existing surface reconstruction algorithms currently reconstruct large amounts of mesh data. Consequently, many of these algorithms cannot meet the efficiency requirements of real-time data transmission in a web environment. This paper proposes a lightweight surface reconstruction method for online 3D scanned point cloud data oriented toward 3D printing. The proposed online lightweight surface reconstruction algorithm is composed of a point cloud update algorithm (PCU), a rapid iterative closest point algorithm (RICP), and an improved Poisson surface reconstruction algorithm (IPSR). The generated lightweight point cloud data are pretreated using an updating and rapid registration method. The Poisson surface reconstruction is also accomplished by a pretreatment to recompute the point cloud normal vectors; this approach is based on a least squares method, and the postprocessing of the PDE patch generation was based on biharmonic-like fourth-order PDEs, which effectively reduces the amount of reconstructed mesh data and improves the efficiency of the algorithm. This method was verified using an online personalized customization system that was developed with WebGL and oriented toward 3D printing. The experimental results indicate that this method can generate a lightweight 3D scanning mesh rapidly and efficiently in a web environment.
doi_str_mv 10.1155/2018/4673849
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2045195512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2045195512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-49836c7893cde045f614db82e4cdbdf7616c6a7ca84a47909afb3c66db4d71473</originalsourceid><addsrcrecordid>eNqF0E1LAzEQBuAgCtbqzbMEPOraZPO1eyytX1BpsQrelmySbVNqUrNZiv_eLBU8epmZw8MM8wJwidEdxoyNcoSLEeWCFLQ8AgPMOMkYpuI4zSinGc7Jxyk4a9sNQjlmuBgAP4Yzu1rHvekrXHahkcrAV6O8a2PoVLTewRcT117Dxgc4d1vrDCRTuFTSOetWcOGti3Cy9Z2GUxklnAdrXDQaRr-XQfd4EZJJ-BycNHLbmovfPgTvD_dvk6dsNn98noxnmSIcxYyWBeFKFCVR2iDKGo6provcUKVr3QiOueJSKFlQSUWJStnURHGua6pF-pgMwfVh7y74r860sdr4Lrh0ssrTPlwyltIYgtuDUsG3bTBNtQv2U4bvCqOqj7TqI61-I0385sDX1mm5t__pq4M2yZhG_ukcCSYo-QHH8n-X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2045195512</pqid></control><display><type>article</type><title>A Lightweight Surface Reconstruction Method for Online 3D Scanning Point Cloud Data Oriented toward 3D Printing</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Wang, Hui ; Zhang, Chenglei ; Yin, Xiyan ; Zhao, Feiyu ; Sheng, Buyun ; Huang, Peide</creator><contributor>Barbu, Tudor ; Tudor Barbu</contributor><creatorcontrib>Wang, Hui ; Zhang, Chenglei ; Yin, Xiyan ; Zhao, Feiyu ; Sheng, Buyun ; Huang, Peide ; Barbu, Tudor ; Tudor Barbu</creatorcontrib><description>The existing surface reconstruction algorithms currently reconstruct large amounts of mesh data. Consequently, many of these algorithms cannot meet the efficiency requirements of real-time data transmission in a web environment. This paper proposes a lightweight surface reconstruction method for online 3D scanned point cloud data oriented toward 3D printing. The proposed online lightweight surface reconstruction algorithm is composed of a point cloud update algorithm (PCU), a rapid iterative closest point algorithm (RICP), and an improved Poisson surface reconstruction algorithm (IPSR). The generated lightweight point cloud data are pretreated using an updating and rapid registration method. The Poisson surface reconstruction is also accomplished by a pretreatment to recompute the point cloud normal vectors; this approach is based on a least squares method, and the postprocessing of the PDE patch generation was based on biharmonic-like fourth-order PDEs, which effectively reduces the amount of reconstructed mesh data and improves the efficiency of the algorithm. This method was verified using an online personalized customization system that was developed with WebGL and oriented toward 3D printing. The experimental results indicate that this method can generate a lightweight 3D scanning mesh rapidly and efficiently in a web environment.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2018/4673849</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>3-D printers ; Algorithms ; Cloud computing ; Computer graphics ; Data transmission ; Engineering ; Least squares method ; Lightweight ; Mathematical problems ; On-line systems ; Pretreatment ; Product development ; Rapid prototyping ; Reconstruction ; Registration ; Scanners ; Scanning ; Three dimensional models ; Three dimensional printing ; Visualization ; Weight reduction</subject><ispartof>Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-16</ispartof><rights>Copyright © 2018 Buyun Sheng et al.</rights><rights>Copyright © 2018 Buyun Sheng et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-49836c7893cde045f614db82e4cdbdf7616c6a7ca84a47909afb3c66db4d71473</citedby><cites>FETCH-LOGICAL-c360t-49836c7893cde045f614db82e4cdbdf7616c6a7ca84a47909afb3c66db4d71473</cites><orcidid>0000-0002-5747-7614 ; 0000-0001-7469-8358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Barbu, Tudor</contributor><contributor>Tudor Barbu</contributor><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Zhang, Chenglei</creatorcontrib><creatorcontrib>Yin, Xiyan</creatorcontrib><creatorcontrib>Zhao, Feiyu</creatorcontrib><creatorcontrib>Sheng, Buyun</creatorcontrib><creatorcontrib>Huang, Peide</creatorcontrib><title>A Lightweight Surface Reconstruction Method for Online 3D Scanning Point Cloud Data Oriented toward 3D Printing</title><title>Mathematical problems in engineering</title><description>The existing surface reconstruction algorithms currently reconstruct large amounts of mesh data. Consequently, many of these algorithms cannot meet the efficiency requirements of real-time data transmission in a web environment. This paper proposes a lightweight surface reconstruction method for online 3D scanned point cloud data oriented toward 3D printing. The proposed online lightweight surface reconstruction algorithm is composed of a point cloud update algorithm (PCU), a rapid iterative closest point algorithm (RICP), and an improved Poisson surface reconstruction algorithm (IPSR). The generated lightweight point cloud data are pretreated using an updating and rapid registration method. The Poisson surface reconstruction is also accomplished by a pretreatment to recompute the point cloud normal vectors; this approach is based on a least squares method, and the postprocessing of the PDE patch generation was based on biharmonic-like fourth-order PDEs, which effectively reduces the amount of reconstructed mesh data and improves the efficiency of the algorithm. This method was verified using an online personalized customization system that was developed with WebGL and oriented toward 3D printing. The experimental results indicate that this method can generate a lightweight 3D scanning mesh rapidly and efficiently in a web environment.</description><subject>3-D printers</subject><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Computer graphics</subject><subject>Data transmission</subject><subject>Engineering</subject><subject>Least squares method</subject><subject>Lightweight</subject><subject>Mathematical problems</subject><subject>On-line systems</subject><subject>Pretreatment</subject><subject>Product development</subject><subject>Rapid prototyping</subject><subject>Reconstruction</subject><subject>Registration</subject><subject>Scanners</subject><subject>Scanning</subject><subject>Three dimensional models</subject><subject>Three dimensional printing</subject><subject>Visualization</subject><subject>Weight reduction</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1LAzEQBuAgCtbqzbMEPOraZPO1eyytX1BpsQrelmySbVNqUrNZiv_eLBU8epmZw8MM8wJwidEdxoyNcoSLEeWCFLQ8AgPMOMkYpuI4zSinGc7Jxyk4a9sNQjlmuBgAP4Yzu1rHvekrXHahkcrAV6O8a2PoVLTewRcT117Dxgc4d1vrDCRTuFTSOetWcOGti3Cy9Z2GUxklnAdrXDQaRr-XQfd4EZJJ-BycNHLbmovfPgTvD_dvk6dsNn98noxnmSIcxYyWBeFKFCVR2iDKGo6provcUKVr3QiOueJSKFlQSUWJStnURHGua6pF-pgMwfVh7y74r860sdr4Lrh0ssrTPlwyltIYgtuDUsG3bTBNtQv2U4bvCqOqj7TqI61-I0385sDX1mm5t__pq4M2yZhG_ukcCSYo-QHH8n-X</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wang, Hui</creator><creator>Zhang, Chenglei</creator><creator>Yin, Xiyan</creator><creator>Zhao, Feiyu</creator><creator>Sheng, Buyun</creator><creator>Huang, Peide</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5747-7614</orcidid><orcidid>https://orcid.org/0000-0001-7469-8358</orcidid></search><sort><creationdate>20180101</creationdate><title>A Lightweight Surface Reconstruction Method for Online 3D Scanning Point Cloud Data Oriented toward 3D Printing</title><author>Wang, Hui ; Zhang, Chenglei ; Yin, Xiyan ; Zhao, Feiyu ; Sheng, Buyun ; Huang, Peide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-49836c7893cde045f614db82e4cdbdf7616c6a7ca84a47909afb3c66db4d71473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3-D printers</topic><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Computer graphics</topic><topic>Data transmission</topic><topic>Engineering</topic><topic>Least squares method</topic><topic>Lightweight</topic><topic>Mathematical problems</topic><topic>On-line systems</topic><topic>Pretreatment</topic><topic>Product development</topic><topic>Rapid prototyping</topic><topic>Reconstruction</topic><topic>Registration</topic><topic>Scanners</topic><topic>Scanning</topic><topic>Three dimensional models</topic><topic>Three dimensional printing</topic><topic>Visualization</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Zhang, Chenglei</creatorcontrib><creatorcontrib>Yin, Xiyan</creatorcontrib><creatorcontrib>Zhao, Feiyu</creatorcontrib><creatorcontrib>Sheng, Buyun</creatorcontrib><creatorcontrib>Huang, Peide</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hui</au><au>Zhang, Chenglei</au><au>Yin, Xiyan</au><au>Zhao, Feiyu</au><au>Sheng, Buyun</au><au>Huang, Peide</au><au>Barbu, Tudor</au><au>Tudor Barbu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lightweight Surface Reconstruction Method for Online 3D Scanning Point Cloud Data Oriented toward 3D Printing</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The existing surface reconstruction algorithms currently reconstruct large amounts of mesh data. Consequently, many of these algorithms cannot meet the efficiency requirements of real-time data transmission in a web environment. This paper proposes a lightweight surface reconstruction method for online 3D scanned point cloud data oriented toward 3D printing. The proposed online lightweight surface reconstruction algorithm is composed of a point cloud update algorithm (PCU), a rapid iterative closest point algorithm (RICP), and an improved Poisson surface reconstruction algorithm (IPSR). The generated lightweight point cloud data are pretreated using an updating and rapid registration method. The Poisson surface reconstruction is also accomplished by a pretreatment to recompute the point cloud normal vectors; this approach is based on a least squares method, and the postprocessing of the PDE patch generation was based on biharmonic-like fourth-order PDEs, which effectively reduces the amount of reconstructed mesh data and improves the efficiency of the algorithm. This method was verified using an online personalized customization system that was developed with WebGL and oriented toward 3D printing. The experimental results indicate that this method can generate a lightweight 3D scanning mesh rapidly and efficiently in a web environment.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/4673849</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5747-7614</orcidid><orcidid>https://orcid.org/0000-0001-7469-8358</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-16
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2045195512
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection
subjects 3-D printers
Algorithms
Cloud computing
Computer graphics
Data transmission
Engineering
Least squares method
Lightweight
Mathematical problems
On-line systems
Pretreatment
Product development
Rapid prototyping
Reconstruction
Registration
Scanners
Scanning
Three dimensional models
Three dimensional printing
Visualization
Weight reduction
title A Lightweight Surface Reconstruction Method for Online 3D Scanning Point Cloud Data Oriented toward 3D Printing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lightweight%20Surface%20Reconstruction%20Method%20for%20Online%203D%20Scanning%20Point%20Cloud%20Data%20Oriented%20toward%203D%20Printing&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Wang,%20Hui&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2018/4673849&rft_dat=%3Cproquest_cross%3E2045195512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2045195512&rft_id=info:pmid/&rfr_iscdi=true