Deteriorated tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn alloy induced by substituting part RE with Ca
Tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn (AE44) alloy was significantly deteriorated after substituting part RE with Ca. According to traditional power-law creep theories, the stress exponent and the activation energy were revealed as 6 and 217kJ/mol, which indicate inco...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-02, Vol.716, p.120-128 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 128 |
---|---|
container_issue | |
container_start_page | 120 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 716 |
creator | Yang, Qiang Qiu, Xin Lv, Shuhui Meng, Fanzhi Guan, Kai Li, Baishun Zhang, Deping Zhang, Yaqin Liu, Xiaojuan Meng, Jian |
description | Tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn (AE44) alloy was significantly deteriorated after substituting part RE with Ca. According to traditional power-law creep theories, the stress exponent and the activation energy were revealed as 6 and 217kJ/mol, which indicate inconsistent mechanisms of dislocation climb and dislocation cross-slip, respectively. Then, transmission electron microscopy (TEM) observations illustrate that dislocation substructures developed during creep are variational with precipitate characters in α-Mg grains, creep stress levels and creep temperatures. Therefore, both stress exponent and activation energy obtained from traditional power-law creep theories are meaningless for the AE44 alloy with part RE substituted by Ca. Finally, the shrink of C36 phase lattice, the precipitation of Al2Ca precipitates and the denuded zones were observed in the crept samples, and all of them are responsible for the deterioration in creep resistance of the AEX422 alloy. Also, this paper provides insight into alloy design principles for further development of creep-resistance Mg–Al–RE based alloys. |
doi_str_mv | 10.1016/j.msea.2018.01.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2044643195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509318300285</els_id><sourcerecordid>2044643195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-2534dc6442441e501568762bca076cdd17b78a9414e1d47b2939284cfc7e68a13</originalsourceid><addsrcrecordid>eNp9kE1qHDEQhUVIIBPHF8hKkHV3qiT1H2RjJuPEYBMw9lqopZoZDe3ujqSOmV1WuUBu6JNEw2SdzSso3ntVfIx9QCgRsP50KJ8imVIAtiVgCaJ5xVbYNrJQnaxfsxV0AosKOvmWvYvxAACooFqx318oUfBTMIkcTzRGPxC3gWjmgaKPyYyW-LTlhu_9bl_MeRuXQNx5KqyJid_tXn79UVfDSe83WaGUdyM3wzAduR_dYnNzf-Rx6WPyaUl-3PHZhMTvN_zZpz1fm_fszdYMkS7_zQv2eL15WH8rbr9_vVlf3RZWijYVopLK2VopoRRSBVjVbVOL3hpoauscNn3Tmk6hInSq6UUnO9Equ7UN1a1BecE-nnvnMP1YKCZ9mJYw5pNagFK1kthV2SXOLhumGANt9Rz8kwlHjaBPvPVBn3jrE28NqDPvHPp8DlH-_6enoKP1lOE5H8gm7Sb_v_hf8iqLPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2044643195</pqid></control><display><type>article</type><title>Deteriorated tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn alloy induced by substituting part RE with Ca</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, Qiang ; Qiu, Xin ; Lv, Shuhui ; Meng, Fanzhi ; Guan, Kai ; Li, Baishun ; Zhang, Deping ; Zhang, Yaqin ; Liu, Xiaojuan ; Meng, Jian</creator><creatorcontrib>Yang, Qiang ; Qiu, Xin ; Lv, Shuhui ; Meng, Fanzhi ; Guan, Kai ; Li, Baishun ; Zhang, Deping ; Zhang, Yaqin ; Liu, Xiaojuan ; Meng, Jian</creatorcontrib><description>Tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn (AE44) alloy was significantly deteriorated after substituting part RE with Ca. According to traditional power-law creep theories, the stress exponent and the activation energy were revealed as 6 and 217kJ/mol, which indicate inconsistent mechanisms of dislocation climb and dislocation cross-slip, respectively. Then, transmission electron microscopy (TEM) observations illustrate that dislocation substructures developed during creep are variational with precipitate characters in α-Mg grains, creep stress levels and creep temperatures. Therefore, both stress exponent and activation energy obtained from traditional power-law creep theories are meaningless for the AE44 alloy with part RE substituted by Ca. Finally, the shrink of C36 phase lattice, the precipitation of Al2Ca precipitates and the denuded zones were observed in the crept samples, and all of them are responsible for the deterioration in creep resistance of the AEX422 alloy. Also, this paper provides insight into alloy design principles for further development of creep-resistance Mg–Al–RE based alloys.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2018.01.027</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Activation energy ; Alloy development ; Alloys ; Chemical precipitation ; Creep resistance ; Creep strength ; Cross slip ; Deterioration ; Dislocation mobility ; Dislocation substructures ; High-pressure die-cast ; Magnesium ; Magnesium alloys ; Magnesium base alloys ; Materials substitution ; Precipitates ; Stresses ; Substructures ; Tensile creep ; Transmission electron microscopy ; Transmission electron microscopy (TEM)</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2018-02, Vol.716, p.120-128</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 14, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-2534dc6442441e501568762bca076cdd17b78a9414e1d47b2939284cfc7e68a13</citedby><cites>FETCH-LOGICAL-c328t-2534dc6442441e501568762bca076cdd17b78a9414e1d47b2939284cfc7e68a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2018.01.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yang, Qiang</creatorcontrib><creatorcontrib>Qiu, Xin</creatorcontrib><creatorcontrib>Lv, Shuhui</creatorcontrib><creatorcontrib>Meng, Fanzhi</creatorcontrib><creatorcontrib>Guan, Kai</creatorcontrib><creatorcontrib>Li, Baishun</creatorcontrib><creatorcontrib>Zhang, Deping</creatorcontrib><creatorcontrib>Zhang, Yaqin</creatorcontrib><creatorcontrib>Liu, Xiaojuan</creatorcontrib><creatorcontrib>Meng, Jian</creatorcontrib><title>Deteriorated tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn alloy induced by substituting part RE with Ca</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn (AE44) alloy was significantly deteriorated after substituting part RE with Ca. According to traditional power-law creep theories, the stress exponent and the activation energy were revealed as 6 and 217kJ/mol, which indicate inconsistent mechanisms of dislocation climb and dislocation cross-slip, respectively. Then, transmission electron microscopy (TEM) observations illustrate that dislocation substructures developed during creep are variational with precipitate characters in α-Mg grains, creep stress levels and creep temperatures. Therefore, both stress exponent and activation energy obtained from traditional power-law creep theories are meaningless for the AE44 alloy with part RE substituted by Ca. Finally, the shrink of C36 phase lattice, the precipitation of Al2Ca precipitates and the denuded zones were observed in the crept samples, and all of them are responsible for the deterioration in creep resistance of the AEX422 alloy. Also, this paper provides insight into alloy design principles for further development of creep-resistance Mg–Al–RE based alloys.</description><subject>Activation energy</subject><subject>Alloy development</subject><subject>Alloys</subject><subject>Chemical precipitation</subject><subject>Creep resistance</subject><subject>Creep strength</subject><subject>Cross slip</subject><subject>Deterioration</subject><subject>Dislocation mobility</subject><subject>Dislocation substructures</subject><subject>High-pressure die-cast</subject><subject>Magnesium</subject><subject>Magnesium alloys</subject><subject>Magnesium base alloys</subject><subject>Materials substitution</subject><subject>Precipitates</subject><subject>Stresses</subject><subject>Substructures</subject><subject>Tensile creep</subject><subject>Transmission electron microscopy</subject><subject>Transmission electron microscopy (TEM)</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1qHDEQhUVIIBPHF8hKkHV3qiT1H2RjJuPEYBMw9lqopZoZDe3ujqSOmV1WuUBu6JNEw2SdzSso3ntVfIx9QCgRsP50KJ8imVIAtiVgCaJ5xVbYNrJQnaxfsxV0AosKOvmWvYvxAACooFqx318oUfBTMIkcTzRGPxC3gWjmgaKPyYyW-LTlhu_9bl_MeRuXQNx5KqyJid_tXn79UVfDSe83WaGUdyM3wzAduR_dYnNzf-Rx6WPyaUl-3PHZhMTvN_zZpz1fm_fszdYMkS7_zQv2eL15WH8rbr9_vVlf3RZWijYVopLK2VopoRRSBVjVbVOL3hpoauscNn3Tmk6hInSq6UUnO9Equ7UN1a1BecE-nnvnMP1YKCZ9mJYw5pNagFK1kthV2SXOLhumGANt9Rz8kwlHjaBPvPVBn3jrE28NqDPvHPp8DlH-_6enoKP1lOE5H8gm7Sb_v_hf8iqLPQ</recordid><startdate>20180214</startdate><enddate>20180214</enddate><creator>Yang, Qiang</creator><creator>Qiu, Xin</creator><creator>Lv, Shuhui</creator><creator>Meng, Fanzhi</creator><creator>Guan, Kai</creator><creator>Li, Baishun</creator><creator>Zhang, Deping</creator><creator>Zhang, Yaqin</creator><creator>Liu, Xiaojuan</creator><creator>Meng, Jian</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180214</creationdate><title>Deteriorated tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn alloy induced by substituting part RE with Ca</title><author>Yang, Qiang ; Qiu, Xin ; Lv, Shuhui ; Meng, Fanzhi ; Guan, Kai ; Li, Baishun ; Zhang, Deping ; Zhang, Yaqin ; Liu, Xiaojuan ; Meng, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-2534dc6442441e501568762bca076cdd17b78a9414e1d47b2939284cfc7e68a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activation energy</topic><topic>Alloy development</topic><topic>Alloys</topic><topic>Chemical precipitation</topic><topic>Creep resistance</topic><topic>Creep strength</topic><topic>Cross slip</topic><topic>Deterioration</topic><topic>Dislocation mobility</topic><topic>Dislocation substructures</topic><topic>High-pressure die-cast</topic><topic>Magnesium</topic><topic>Magnesium alloys</topic><topic>Magnesium base alloys</topic><topic>Materials substitution</topic><topic>Precipitates</topic><topic>Stresses</topic><topic>Substructures</topic><topic>Tensile creep</topic><topic>Transmission electron microscopy</topic><topic>Transmission electron microscopy (TEM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qiang</creatorcontrib><creatorcontrib>Qiu, Xin</creatorcontrib><creatorcontrib>Lv, Shuhui</creatorcontrib><creatorcontrib>Meng, Fanzhi</creatorcontrib><creatorcontrib>Guan, Kai</creatorcontrib><creatorcontrib>Li, Baishun</creatorcontrib><creatorcontrib>Zhang, Deping</creatorcontrib><creatorcontrib>Zhang, Yaqin</creatorcontrib><creatorcontrib>Liu, Xiaojuan</creatorcontrib><creatorcontrib>Meng, Jian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qiang</au><au>Qiu, Xin</au><au>Lv, Shuhui</au><au>Meng, Fanzhi</au><au>Guan, Kai</au><au>Li, Baishun</au><au>Zhang, Deping</au><au>Zhang, Yaqin</au><au>Liu, Xiaojuan</au><au>Meng, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deteriorated tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn alloy induced by substituting part RE with Ca</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2018-02-14</date><risdate>2018</risdate><volume>716</volume><spage>120</spage><epage>128</epage><pages>120-128</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn (AE44) alloy was significantly deteriorated after substituting part RE with Ca. According to traditional power-law creep theories, the stress exponent and the activation energy were revealed as 6 and 217kJ/mol, which indicate inconsistent mechanisms of dislocation climb and dislocation cross-slip, respectively. Then, transmission electron microscopy (TEM) observations illustrate that dislocation substructures developed during creep are variational with precipitate characters in α-Mg grains, creep stress levels and creep temperatures. Therefore, both stress exponent and activation energy obtained from traditional power-law creep theories are meaningless for the AE44 alloy with part RE substituted by Ca. Finally, the shrink of C36 phase lattice, the precipitation of Al2Ca precipitates and the denuded zones were observed in the crept samples, and all of them are responsible for the deterioration in creep resistance of the AEX422 alloy. Also, this paper provides insight into alloy design principles for further development of creep-resistance Mg–Al–RE based alloys.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2018.01.027</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2018-02, Vol.716, p.120-128 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2044643195 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Activation energy Alloy development Alloys Chemical precipitation Creep resistance Creep strength Cross slip Deterioration Dislocation mobility Dislocation substructures High-pressure die-cast Magnesium Magnesium alloys Magnesium base alloys Materials substitution Precipitates Stresses Substructures Tensile creep Transmission electron microscopy Transmission electron microscopy (TEM) |
title | Deteriorated tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn alloy induced by substituting part RE with Ca |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deteriorated%20tensile%20creep%20resistance%20of%20a%20high-pressure%20die-cast%20Mg%E2%80%934Al%E2%80%934RE%E2%80%930.3Mn%20alloy%20induced%20by%20substituting%20part%20RE%20with%20Ca&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Yang,%20Qiang&rft.date=2018-02-14&rft.volume=716&rft.spage=120&rft.epage=128&rft.pages=120-128&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2018.01.027&rft_dat=%3Cproquest_cross%3E2044643195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2044643195&rft_id=info:pmid/&rft_els_id=S0921509318300285&rfr_iscdi=true |