Deteriorated tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn alloy induced by substituting part RE with Ca

Tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn (AE44) alloy was significantly deteriorated after substituting part RE with Ca. According to traditional power-law creep theories, the stress exponent and the activation energy were revealed as 6 and 217kJ/mol, which indicate inco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-02, Vol.716, p.120-128
Hauptverfasser: Yang, Qiang, Qiu, Xin, Lv, Shuhui, Meng, Fanzhi, Guan, Kai, Li, Baishun, Zhang, Deping, Zhang, Yaqin, Liu, Xiaojuan, Meng, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue
container_start_page 120
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 716
creator Yang, Qiang
Qiu, Xin
Lv, Shuhui
Meng, Fanzhi
Guan, Kai
Li, Baishun
Zhang, Deping
Zhang, Yaqin
Liu, Xiaojuan
Meng, Jian
description Tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn (AE44) alloy was significantly deteriorated after substituting part RE with Ca. According to traditional power-law creep theories, the stress exponent and the activation energy were revealed as 6 and 217kJ/mol, which indicate inconsistent mechanisms of dislocation climb and dislocation cross-slip, respectively. Then, transmission electron microscopy (TEM) observations illustrate that dislocation substructures developed during creep are variational with precipitate characters in α-Mg grains, creep stress levels and creep temperatures. Therefore, both stress exponent and activation energy obtained from traditional power-law creep theories are meaningless for the AE44 alloy with part RE substituted by Ca. Finally, the shrink of C36 phase lattice, the precipitation of Al2Ca precipitates and the denuded zones were observed in the crept samples, and all of them are responsible for the deterioration in creep resistance of the AEX422 alloy. Also, this paper provides insight into alloy design principles for further development of creep-resistance Mg–Al–RE based alloys.
doi_str_mv 10.1016/j.msea.2018.01.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2044643195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509318300285</els_id><sourcerecordid>2044643195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-2534dc6442441e501568762bca076cdd17b78a9414e1d47b2939284cfc7e68a13</originalsourceid><addsrcrecordid>eNp9kE1qHDEQhUVIIBPHF8hKkHV3qiT1H2RjJuPEYBMw9lqopZoZDe3ujqSOmV1WuUBu6JNEw2SdzSso3ntVfIx9QCgRsP50KJ8imVIAtiVgCaJ5xVbYNrJQnaxfsxV0AosKOvmWvYvxAACooFqx318oUfBTMIkcTzRGPxC3gWjmgaKPyYyW-LTlhu_9bl_MeRuXQNx5KqyJid_tXn79UVfDSe83WaGUdyM3wzAduR_dYnNzf-Rx6WPyaUl-3PHZhMTvN_zZpz1fm_fszdYMkS7_zQv2eL15WH8rbr9_vVlf3RZWijYVopLK2VopoRRSBVjVbVOL3hpoauscNn3Tmk6hInSq6UUnO9Equ7UN1a1BecE-nnvnMP1YKCZ9mJYw5pNagFK1kthV2SXOLhumGANt9Rz8kwlHjaBPvPVBn3jrE28NqDPvHPp8DlH-_6enoKP1lOE5H8gm7Sb_v_hf8iqLPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2044643195</pqid></control><display><type>article</type><title>Deteriorated tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn alloy induced by substituting part RE with Ca</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, Qiang ; Qiu, Xin ; Lv, Shuhui ; Meng, Fanzhi ; Guan, Kai ; Li, Baishun ; Zhang, Deping ; Zhang, Yaqin ; Liu, Xiaojuan ; Meng, Jian</creator><creatorcontrib>Yang, Qiang ; Qiu, Xin ; Lv, Shuhui ; Meng, Fanzhi ; Guan, Kai ; Li, Baishun ; Zhang, Deping ; Zhang, Yaqin ; Liu, Xiaojuan ; Meng, Jian</creatorcontrib><description>Tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn (AE44) alloy was significantly deteriorated after substituting part RE with Ca. According to traditional power-law creep theories, the stress exponent and the activation energy were revealed as 6 and 217kJ/mol, which indicate inconsistent mechanisms of dislocation climb and dislocation cross-slip, respectively. Then, transmission electron microscopy (TEM) observations illustrate that dislocation substructures developed during creep are variational with precipitate characters in α-Mg grains, creep stress levels and creep temperatures. Therefore, both stress exponent and activation energy obtained from traditional power-law creep theories are meaningless for the AE44 alloy with part RE substituted by Ca. Finally, the shrink of C36 phase lattice, the precipitation of Al2Ca precipitates and the denuded zones were observed in the crept samples, and all of them are responsible for the deterioration in creep resistance of the AEX422 alloy. Also, this paper provides insight into alloy design principles for further development of creep-resistance Mg–Al–RE based alloys.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2018.01.027</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Activation energy ; Alloy development ; Alloys ; Chemical precipitation ; Creep resistance ; Creep strength ; Cross slip ; Deterioration ; Dislocation mobility ; Dislocation substructures ; High-pressure die-cast ; Magnesium ; Magnesium alloys ; Magnesium base alloys ; Materials substitution ; Precipitates ; Stresses ; Substructures ; Tensile creep ; Transmission electron microscopy ; Transmission electron microscopy (TEM)</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2018-02, Vol.716, p.120-128</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 14, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-2534dc6442441e501568762bca076cdd17b78a9414e1d47b2939284cfc7e68a13</citedby><cites>FETCH-LOGICAL-c328t-2534dc6442441e501568762bca076cdd17b78a9414e1d47b2939284cfc7e68a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2018.01.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yang, Qiang</creatorcontrib><creatorcontrib>Qiu, Xin</creatorcontrib><creatorcontrib>Lv, Shuhui</creatorcontrib><creatorcontrib>Meng, Fanzhi</creatorcontrib><creatorcontrib>Guan, Kai</creatorcontrib><creatorcontrib>Li, Baishun</creatorcontrib><creatorcontrib>Zhang, Deping</creatorcontrib><creatorcontrib>Zhang, Yaqin</creatorcontrib><creatorcontrib>Liu, Xiaojuan</creatorcontrib><creatorcontrib>Meng, Jian</creatorcontrib><title>Deteriorated tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn alloy induced by substituting part RE with Ca</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn (AE44) alloy was significantly deteriorated after substituting part RE with Ca. According to traditional power-law creep theories, the stress exponent and the activation energy were revealed as 6 and 217kJ/mol, which indicate inconsistent mechanisms of dislocation climb and dislocation cross-slip, respectively. Then, transmission electron microscopy (TEM) observations illustrate that dislocation substructures developed during creep are variational with precipitate characters in α-Mg grains, creep stress levels and creep temperatures. Therefore, both stress exponent and activation energy obtained from traditional power-law creep theories are meaningless for the AE44 alloy with part RE substituted by Ca. Finally, the shrink of C36 phase lattice, the precipitation of Al2Ca precipitates and the denuded zones were observed in the crept samples, and all of them are responsible for the deterioration in creep resistance of the AEX422 alloy. Also, this paper provides insight into alloy design principles for further development of creep-resistance Mg–Al–RE based alloys.</description><subject>Activation energy</subject><subject>Alloy development</subject><subject>Alloys</subject><subject>Chemical precipitation</subject><subject>Creep resistance</subject><subject>Creep strength</subject><subject>Cross slip</subject><subject>Deterioration</subject><subject>Dislocation mobility</subject><subject>Dislocation substructures</subject><subject>High-pressure die-cast</subject><subject>Magnesium</subject><subject>Magnesium alloys</subject><subject>Magnesium base alloys</subject><subject>Materials substitution</subject><subject>Precipitates</subject><subject>Stresses</subject><subject>Substructures</subject><subject>Tensile creep</subject><subject>Transmission electron microscopy</subject><subject>Transmission electron microscopy (TEM)</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1qHDEQhUVIIBPHF8hKkHV3qiT1H2RjJuPEYBMw9lqopZoZDe3ujqSOmV1WuUBu6JNEw2SdzSso3ntVfIx9QCgRsP50KJ8imVIAtiVgCaJ5xVbYNrJQnaxfsxV0AosKOvmWvYvxAACooFqx318oUfBTMIkcTzRGPxC3gWjmgaKPyYyW-LTlhu_9bl_MeRuXQNx5KqyJid_tXn79UVfDSe83WaGUdyM3wzAduR_dYnNzf-Rx6WPyaUl-3PHZhMTvN_zZpz1fm_fszdYMkS7_zQv2eL15WH8rbr9_vVlf3RZWijYVopLK2VopoRRSBVjVbVOL3hpoauscNn3Tmk6hInSq6UUnO9Equ7UN1a1BecE-nnvnMP1YKCZ9mJYw5pNagFK1kthV2SXOLhumGANt9Rz8kwlHjaBPvPVBn3jrE28NqDPvHPp8DlH-_6enoKP1lOE5H8gm7Sb_v_hf8iqLPQ</recordid><startdate>20180214</startdate><enddate>20180214</enddate><creator>Yang, Qiang</creator><creator>Qiu, Xin</creator><creator>Lv, Shuhui</creator><creator>Meng, Fanzhi</creator><creator>Guan, Kai</creator><creator>Li, Baishun</creator><creator>Zhang, Deping</creator><creator>Zhang, Yaqin</creator><creator>Liu, Xiaojuan</creator><creator>Meng, Jian</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180214</creationdate><title>Deteriorated tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn alloy induced by substituting part RE with Ca</title><author>Yang, Qiang ; Qiu, Xin ; Lv, Shuhui ; Meng, Fanzhi ; Guan, Kai ; Li, Baishun ; Zhang, Deping ; Zhang, Yaqin ; Liu, Xiaojuan ; Meng, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-2534dc6442441e501568762bca076cdd17b78a9414e1d47b2939284cfc7e68a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activation energy</topic><topic>Alloy development</topic><topic>Alloys</topic><topic>Chemical precipitation</topic><topic>Creep resistance</topic><topic>Creep strength</topic><topic>Cross slip</topic><topic>Deterioration</topic><topic>Dislocation mobility</topic><topic>Dislocation substructures</topic><topic>High-pressure die-cast</topic><topic>Magnesium</topic><topic>Magnesium alloys</topic><topic>Magnesium base alloys</topic><topic>Materials substitution</topic><topic>Precipitates</topic><topic>Stresses</topic><topic>Substructures</topic><topic>Tensile creep</topic><topic>Transmission electron microscopy</topic><topic>Transmission electron microscopy (TEM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qiang</creatorcontrib><creatorcontrib>Qiu, Xin</creatorcontrib><creatorcontrib>Lv, Shuhui</creatorcontrib><creatorcontrib>Meng, Fanzhi</creatorcontrib><creatorcontrib>Guan, Kai</creatorcontrib><creatorcontrib>Li, Baishun</creatorcontrib><creatorcontrib>Zhang, Deping</creatorcontrib><creatorcontrib>Zhang, Yaqin</creatorcontrib><creatorcontrib>Liu, Xiaojuan</creatorcontrib><creatorcontrib>Meng, Jian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qiang</au><au>Qiu, Xin</au><au>Lv, Shuhui</au><au>Meng, Fanzhi</au><au>Guan, Kai</au><au>Li, Baishun</au><au>Zhang, Deping</au><au>Zhang, Yaqin</au><au>Liu, Xiaojuan</au><au>Meng, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deteriorated tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn alloy induced by substituting part RE with Ca</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2018-02-14</date><risdate>2018</risdate><volume>716</volume><spage>120</spage><epage>128</epage><pages>120-128</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn (AE44) alloy was significantly deteriorated after substituting part RE with Ca. According to traditional power-law creep theories, the stress exponent and the activation energy were revealed as 6 and 217kJ/mol, which indicate inconsistent mechanisms of dislocation climb and dislocation cross-slip, respectively. Then, transmission electron microscopy (TEM) observations illustrate that dislocation substructures developed during creep are variational with precipitate characters in α-Mg grains, creep stress levels and creep temperatures. Therefore, both stress exponent and activation energy obtained from traditional power-law creep theories are meaningless for the AE44 alloy with part RE substituted by Ca. Finally, the shrink of C36 phase lattice, the precipitation of Al2Ca precipitates and the denuded zones were observed in the crept samples, and all of them are responsible for the deterioration in creep resistance of the AEX422 alloy. Also, this paper provides insight into alloy design principles for further development of creep-resistance Mg–Al–RE based alloys.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2018.01.027</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2018-02, Vol.716, p.120-128
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2044643195
source Elsevier ScienceDirect Journals Complete
subjects Activation energy
Alloy development
Alloys
Chemical precipitation
Creep resistance
Creep strength
Cross slip
Deterioration
Dislocation mobility
Dislocation substructures
High-pressure die-cast
Magnesium
Magnesium alloys
Magnesium base alloys
Materials substitution
Precipitates
Stresses
Substructures
Tensile creep
Transmission electron microscopy
Transmission electron microscopy (TEM)
title Deteriorated tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn alloy induced by substituting part RE with Ca
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deteriorated%20tensile%20creep%20resistance%20of%20a%20high-pressure%20die-cast%20Mg%E2%80%934Al%E2%80%934RE%E2%80%930.3Mn%20alloy%20induced%20by%20substituting%20part%20RE%20with%20Ca&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Yang,%20Qiang&rft.date=2018-02-14&rft.volume=716&rft.spage=120&rft.epage=128&rft.pages=120-128&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2018.01.027&rft_dat=%3Cproquest_cross%3E2044643195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2044643195&rft_id=info:pmid/&rft_els_id=S0921509318300285&rfr_iscdi=true