Experimental simulations of explosive degassing of magma

THE violent release of volatiles in explosive volcanic eruptions is known to cause fragmentation of magma and acceleration of the resulting mixture of gas and pyroclasts to velocities exceeding 100 m s -1 (ref. 1). But the mechanisms underlying bubble nuclea-tion, flow acceleration and fragmentation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 1994-11, Vol.372 (6501), p.85-88
Hauptverfasser: Mader, H. M, Zhang, Y, Phillips, J. C, Sparks, R. S. J, Sturtevant, B, Stolper, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue 6501
container_start_page 85
container_title Nature (London)
container_volume 372
creator Mader, H. M
Zhang, Y
Phillips, J. C
Sparks, R. S. J
Sturtevant, B
Stolper, E
description THE violent release of volatiles in explosive volcanic eruptions is known to cause fragmentation of magma and acceleration of the resulting mixture of gas and pyroclasts to velocities exceeding 100 m s -1 (ref. 1). But the mechanisms underlying bubble nuclea-tion, flow acceleration and fragmentation are complex and poorly understood. To gain insight into these phenomena, we have simu-lated explosive eruptions using two model systems that generate expansion rates and flow velocities comparable to those observed in erupting volcanos. The key feature of both experiments is the generation of large supersaturations of carbon dioxide in a liquid phase, achieved either by decompressing CO 2- saturated water or by rapid mixing of concentrated K 2 CO 3 and HC1 solutions. We show that liberation of CO 2 from the aqueous phase is enhanced by violent acceleration of the mixture, which induces strong exten-sional strain in the developing foam. Fragmentation then occurs when the bubble density and expansion rate are such that the bubble walls rupture. In contrast to conventional models of fragmentation 1,2 , we find that expansion and acceleration precede—and indeed cause—fragmentation.
doi_str_mv 10.1038/372085a0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204456380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4954077</sourcerecordid><originalsourceid>FETCH-LOGICAL-a395t-9f0567a26539955217d4ec2f6a0b91a1eb97c41c32aa811ebd318b3707e378893</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRsFbBXyBBPOghOvu9e5RSP6DgRc9hkm5CSr7cTaT-e1NS68XTMDMPzzAvIZcU7ilw88A1AyMRjsiMCq1ioYw-JjMAZmIwXJ2SsxA2ACCpFjNiltvO-bJ2TY9VFMp6qLAv2yZEbR65bVe1ofxy0doVGELZFLtxjUWN5-Qkxyq4i32dk4-n5fviJV69Pb8uHlcxciv72OYglUamJLdWSkb1WriM5QohtRSpS63OBM04QzR0bNecmpRr0I5rYyyfk-vJ2_n2c3ChTzbt4JvxZMJACKm4gRG6naDMtyF4lyfd-BP674RCsosl-Y1lRG_2PgwZVrnHJivDgRdMaZBsxO4mLIybpnD-7-w_yquJbbAfvDu4DsAPY1Z25w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204456380</pqid></control><display><type>article</type><title>Experimental simulations of explosive degassing of magma</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Mader, H. M ; Zhang, Y ; Phillips, J. C ; Sparks, R. S. J ; Sturtevant, B ; Stolper, E</creator><creatorcontrib>Mader, H. M ; Zhang, Y ; Phillips, J. C ; Sparks, R. S. J ; Sturtevant, B ; Stolper, E</creatorcontrib><description>THE violent release of volatiles in explosive volcanic eruptions is known to cause fragmentation of magma and acceleration of the resulting mixture of gas and pyroclasts to velocities exceeding 100 m s -1 (ref. 1). But the mechanisms underlying bubble nuclea-tion, flow acceleration and fragmentation are complex and poorly understood. To gain insight into these phenomena, we have simu-lated explosive eruptions using two model systems that generate expansion rates and flow velocities comparable to those observed in erupting volcanos. The key feature of both experiments is the generation of large supersaturations of carbon dioxide in a liquid phase, achieved either by decompressing CO 2- saturated water or by rapid mixing of concentrated K 2 CO 3 and HC1 solutions. We show that liberation of CO 2 from the aqueous phase is enhanced by violent acceleration of the mixture, which induces strong exten-sional strain in the developing foam. Fragmentation then occurs when the bubble density and expansion rate are such that the bubble walls rupture. In contrast to conventional models of fragmentation 1,2 , we find that expansion and acceleration precede—and indeed cause—fragmentation.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/372085a0</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Accelerated flow ; Carbon dioxide ; Crystalline rocks ; Degassing ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Flow velocity ; Humanities and Social Sciences ; Igneous and metamorphic rocks petrology, volcanic processes, magmas ; letter ; Magma ; multidisciplinary ; Science ; Science (multidisciplinary) ; Seismology ; Simulation ; Volcanic eruptions ; Volcanoes</subject><ispartof>Nature (London), 1994-11, Vol.372 (6501), p.85-88</ispartof><rights>Springer Nature Limited 1994</rights><rights>1994 INIST-CNRS</rights><rights>Copyright Macmillan Journals Ltd. Nov 3, 1994</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a395t-9f0567a26539955217d4ec2f6a0b91a1eb97c41c32aa811ebd318b3707e378893</citedby><cites>FETCH-LOGICAL-a395t-9f0567a26539955217d4ec2f6a0b91a1eb97c41c32aa811ebd318b3707e378893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/372085a0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/372085a0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4267052$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mader, H. M</creatorcontrib><creatorcontrib>Zhang, Y</creatorcontrib><creatorcontrib>Phillips, J. C</creatorcontrib><creatorcontrib>Sparks, R. S. J</creatorcontrib><creatorcontrib>Sturtevant, B</creatorcontrib><creatorcontrib>Stolper, E</creatorcontrib><title>Experimental simulations of explosive degassing of magma</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>THE violent release of volatiles in explosive volcanic eruptions is known to cause fragmentation of magma and acceleration of the resulting mixture of gas and pyroclasts to velocities exceeding 100 m s -1 (ref. 1). But the mechanisms underlying bubble nuclea-tion, flow acceleration and fragmentation are complex and poorly understood. To gain insight into these phenomena, we have simu-lated explosive eruptions using two model systems that generate expansion rates and flow velocities comparable to those observed in erupting volcanos. The key feature of both experiments is the generation of large supersaturations of carbon dioxide in a liquid phase, achieved either by decompressing CO 2- saturated water or by rapid mixing of concentrated K 2 CO 3 and HC1 solutions. We show that liberation of CO 2 from the aqueous phase is enhanced by violent acceleration of the mixture, which induces strong exten-sional strain in the developing foam. Fragmentation then occurs when the bubble density and expansion rate are such that the bubble walls rupture. In contrast to conventional models of fragmentation 1,2 , we find that expansion and acceleration precede—and indeed cause—fragmentation.</description><subject>Accelerated flow</subject><subject>Carbon dioxide</subject><subject>Crystalline rocks</subject><subject>Degassing</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Flow velocity</subject><subject>Humanities and Social Sciences</subject><subject>Igneous and metamorphic rocks petrology, volcanic processes, magmas</subject><subject>letter</subject><subject>Magma</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Seismology</subject><subject>Simulation</subject><subject>Volcanic eruptions</subject><subject>Volcanoes</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1Lw0AQhhdRsFbBXyBBPOghOvu9e5RSP6DgRc9hkm5CSr7cTaT-e1NS68XTMDMPzzAvIZcU7ilw88A1AyMRjsiMCq1ioYw-JjMAZmIwXJ2SsxA2ACCpFjNiltvO-bJ2TY9VFMp6qLAv2yZEbR65bVe1ofxy0doVGELZFLtxjUWN5-Qkxyq4i32dk4-n5fviJV69Pb8uHlcxciv72OYglUamJLdWSkb1WriM5QohtRSpS63OBM04QzR0bNecmpRr0I5rYyyfk-vJ2_n2c3ChTzbt4JvxZMJACKm4gRG6naDMtyF4lyfd-BP674RCsosl-Y1lRG_2PgwZVrnHJivDgRdMaZBsxO4mLIybpnD-7-w_yquJbbAfvDu4DsAPY1Z25w</recordid><startdate>19941103</startdate><enddate>19941103</enddate><creator>Mader, H. M</creator><creator>Zhang, Y</creator><creator>Phillips, J. C</creator><creator>Sparks, R. S. J</creator><creator>Sturtevant, B</creator><creator>Stolper, E</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>19941103</creationdate><title>Experimental simulations of explosive degassing of magma</title><author>Mader, H. M ; Zhang, Y ; Phillips, J. C ; Sparks, R. S. J ; Sturtevant, B ; Stolper, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a395t-9f0567a26539955217d4ec2f6a0b91a1eb97c41c32aa811ebd318b3707e378893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Accelerated flow</topic><topic>Carbon dioxide</topic><topic>Crystalline rocks</topic><topic>Degassing</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Flow velocity</topic><topic>Humanities and Social Sciences</topic><topic>Igneous and metamorphic rocks petrology, volcanic processes, magmas</topic><topic>letter</topic><topic>Magma</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Seismology</topic><topic>Simulation</topic><topic>Volcanic eruptions</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mader, H. M</creatorcontrib><creatorcontrib>Zhang, Y</creatorcontrib><creatorcontrib>Phillips, J. C</creatorcontrib><creatorcontrib>Sparks, R. S. J</creatorcontrib><creatorcontrib>Sturtevant, B</creatorcontrib><creatorcontrib>Stolper, E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mader, H. M</au><au>Zhang, Y</au><au>Phillips, J. C</au><au>Sparks, R. S. J</au><au>Sturtevant, B</au><au>Stolper, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental simulations of explosive degassing of magma</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>1994-11-03</date><risdate>1994</risdate><volume>372</volume><issue>6501</issue><spage>85</spage><epage>88</epage><pages>85-88</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>THE violent release of volatiles in explosive volcanic eruptions is known to cause fragmentation of magma and acceleration of the resulting mixture of gas and pyroclasts to velocities exceeding 100 m s -1 (ref. 1). But the mechanisms underlying bubble nuclea-tion, flow acceleration and fragmentation are complex and poorly understood. To gain insight into these phenomena, we have simu-lated explosive eruptions using two model systems that generate expansion rates and flow velocities comparable to those observed in erupting volcanos. The key feature of both experiments is the generation of large supersaturations of carbon dioxide in a liquid phase, achieved either by decompressing CO 2- saturated water or by rapid mixing of concentrated K 2 CO 3 and HC1 solutions. We show that liberation of CO 2 from the aqueous phase is enhanced by violent acceleration of the mixture, which induces strong exten-sional strain in the developing foam. Fragmentation then occurs when the bubble density and expansion rate are such that the bubble walls rupture. In contrast to conventional models of fragmentation 1,2 , we find that expansion and acceleration precede—and indeed cause—fragmentation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/372085a0</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 1994-11, Vol.372 (6501), p.85-88
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_journals_204456380
source Nature; SpringerLink Journals - AutoHoldings
subjects Accelerated flow
Carbon dioxide
Crystalline rocks
Degassing
Earth sciences
Earth, ocean, space
Exact sciences and technology
Flow velocity
Humanities and Social Sciences
Igneous and metamorphic rocks petrology, volcanic processes, magmas
letter
Magma
multidisciplinary
Science
Science (multidisciplinary)
Seismology
Simulation
Volcanic eruptions
Volcanoes
title Experimental simulations of explosive degassing of magma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20simulations%20of%20explosive%20degassing%20of%20magma&rft.jtitle=Nature%20(London)&rft.au=Mader,%20H.%20M&rft.date=1994-11-03&rft.volume=372&rft.issue=6501&rft.spage=85&rft.epage=88&rft.pages=85-88&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/372085a0&rft_dat=%3Cproquest_cross%3E4954077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204456380&rft_id=info:pmid/&rfr_iscdi=true