Double herbicide-resistant biotypes of wild oat (Avena fatua) display characteristic metabolic fingerprints before and after applying ACCase- and ALS-inhibitors

Plant herbicides inhibit specific enzymes of biosynthetic metabolism, such as acetyl-coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS). Herbicide resistance can be caused by point mutations at the binding domains, catalytic sites and other regions within multimeric enzymes. Direct-inje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta physiologiae plantarum 2018-06, Vol.40 (6), p.1-12, Article 119
Hauptverfasser: Torres-García, Jesús R., Tafoya-Razo, J. Antonio, Velázquez-Márquez, Sabina, Tiessen, Axel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 6
container_start_page 1
container_title Acta physiologiae plantarum
container_volume 40
creator Torres-García, Jesús R.
Tafoya-Razo, J. Antonio
Velázquez-Márquez, Sabina
Tiessen, Axel
description Plant herbicides inhibit specific enzymes of biosynthetic metabolism, such as acetyl-coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS). Herbicide resistance can be caused by point mutations at the binding domains, catalytic sites and other regions within multimeric enzymes. Direct-injection electrospray mass spectrometry was used for high-throughput metabolic fingerprinting for finding significant differences among biotypes in response to herbicide application. A Mexican biotype of wild oat ( Avena fatua) that displays multiple resistances to ACCase- and ALS-inhibiting herbicides was characterized. The dose–response test showed that the double-resistant biotype had a resistance index of 3.58 for pinoxaden and 3.53 for mesosulfuron-methyl. Resistance was accompanied by characteristic mutations at the site of action: an I-1781-L substitution occurred in the ACCase enzyme and an S-653-N mutation was identified within the ALS enzyme. Other mutations were also detected in the genes of the Mexican biotypes. The ionomic fingerprint showed that the multiple-resistant biotype had a markedly different metabolic pattern under control conditions and that this difference was accentuated after herbicide treatment. This demonstrates that single changes of amino acid sequences can produce several holistic modifications in the metabolism of resistant plants compared to susceptible plants. We conclude that in addition to genetic resistance, additional mechanisms of metabolic adaptation and detoxification can occur in multiple-resistant weed plants.
doi_str_mv 10.1007/s11738-018-2691-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2044406332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2044406332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-afb0d118bea1912fc9b1d9aad0d4dad3cd6cd411f2d5d451f6534d3192dbbba73</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxi1EJZaWB-BmiUs5GDxx4k2Oq6UtlVbiUDhb43-sqzQOtrdV3oZHrbeLxKmnGWl-34zm-wj5CPwLcL7-mgHWomccetbIAdjyhqygl8BAyvYtWXEQa9b1Pbwj73O-57wTnZQr8vdbPOjR0b1LOphgHUsuh1xwKlSHWJbZZRo9fQqjpRELvdw8ugmpx3LAz9SGPI-4ULPHhKa4VKXB0AdXUMexdj5Mv12aU5hKptr5mBzFyVL0FaY4z-NSCbrZbjE79jLa7O5YmPZBhxJTviBnHsfsPvyr5-TX9dXP7Xe2-3Fzu93smBEgC0OvuQXotUMYoPFm0GAHRMtta9EKY6WxLYBvbGfbDrzsRGsFDI3VWuNanJNPp71zin8OLhd1Hw9pqidVw9u25VKIplJwokyKOSfnVX3tAdOigKtjEOoUhKpBqGMQaqma5qTJRxuqG_83vy56BtW0j_U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2044406332</pqid></control><display><type>article</type><title>Double herbicide-resistant biotypes of wild oat (Avena fatua) display characteristic metabolic fingerprints before and after applying ACCase- and ALS-inhibitors</title><source>SpringerLink Journals</source><creator>Torres-García, Jesús R. ; Tafoya-Razo, J. Antonio ; Velázquez-Márquez, Sabina ; Tiessen, Axel</creator><creatorcontrib>Torres-García, Jesús R. ; Tafoya-Razo, J. Antonio ; Velázquez-Márquez, Sabina ; Tiessen, Axel</creatorcontrib><description>Plant herbicides inhibit specific enzymes of biosynthetic metabolism, such as acetyl-coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS). Herbicide resistance can be caused by point mutations at the binding domains, catalytic sites and other regions within multimeric enzymes. Direct-injection electrospray mass spectrometry was used for high-throughput metabolic fingerprinting for finding significant differences among biotypes in response to herbicide application. A Mexican biotype of wild oat ( Avena fatua) that displays multiple resistances to ACCase- and ALS-inhibiting herbicides was characterized. The dose–response test showed that the double-resistant biotype had a resistance index of 3.58 for pinoxaden and 3.53 for mesosulfuron-methyl. Resistance was accompanied by characteristic mutations at the site of action: an I-1781-L substitution occurred in the ACCase enzyme and an S-653-N mutation was identified within the ALS enzyme. Other mutations were also detected in the genes of the Mexican biotypes. The ionomic fingerprint showed that the multiple-resistant biotype had a markedly different metabolic pattern under control conditions and that this difference was accentuated after herbicide treatment. This demonstrates that single changes of amino acid sequences can produce several holistic modifications in the metabolism of resistant plants compared to susceptible plants. We conclude that in addition to genetic resistance, additional mechanisms of metabolic adaptation and detoxification can occur in multiple-resistant weed plants.</description><identifier>ISSN: 0137-5881</identifier><identifier>EISSN: 1861-1664</identifier><identifier>DOI: 10.1007/s11738-018-2691-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetolactate synthase ; Active sites ; Agriculture ; Amino acid sequence ; Avena fatua ; Biomedical and Life Sciences ; Biotypes ; Catalysis ; Coenzyme A ; Detoxification ; Enzymes ; Fingerprinting ; Fingerprints ; Herbicide resistance ; Herbicides ; Life Sciences ; Mass spectrometry ; Mass spectroscopy ; Metabolism ; Mutation ; Original Article ; Plant Anatomy/Development ; Plant Biochemistry ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology</subject><ispartof>Acta physiologiae plantarum, 2018-06, Vol.40 (6), p.1-12, Article 119</ispartof><rights>Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-afb0d118bea1912fc9b1d9aad0d4dad3cd6cd411f2d5d451f6534d3192dbbba73</citedby><cites>FETCH-LOGICAL-c316t-afb0d118bea1912fc9b1d9aad0d4dad3cd6cd411f2d5d451f6534d3192dbbba73</cites><orcidid>0000-0001-5572-4274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11738-018-2691-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11738-018-2691-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Torres-García, Jesús R.</creatorcontrib><creatorcontrib>Tafoya-Razo, J. Antonio</creatorcontrib><creatorcontrib>Velázquez-Márquez, Sabina</creatorcontrib><creatorcontrib>Tiessen, Axel</creatorcontrib><title>Double herbicide-resistant biotypes of wild oat (Avena fatua) display characteristic metabolic fingerprints before and after applying ACCase- and ALS-inhibitors</title><title>Acta physiologiae plantarum</title><addtitle>Acta Physiol Plant</addtitle><description>Plant herbicides inhibit specific enzymes of biosynthetic metabolism, such as acetyl-coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS). Herbicide resistance can be caused by point mutations at the binding domains, catalytic sites and other regions within multimeric enzymes. Direct-injection electrospray mass spectrometry was used for high-throughput metabolic fingerprinting for finding significant differences among biotypes in response to herbicide application. A Mexican biotype of wild oat ( Avena fatua) that displays multiple resistances to ACCase- and ALS-inhibiting herbicides was characterized. The dose–response test showed that the double-resistant biotype had a resistance index of 3.58 for pinoxaden and 3.53 for mesosulfuron-methyl. Resistance was accompanied by characteristic mutations at the site of action: an I-1781-L substitution occurred in the ACCase enzyme and an S-653-N mutation was identified within the ALS enzyme. Other mutations were also detected in the genes of the Mexican biotypes. The ionomic fingerprint showed that the multiple-resistant biotype had a markedly different metabolic pattern under control conditions and that this difference was accentuated after herbicide treatment. This demonstrates that single changes of amino acid sequences can produce several holistic modifications in the metabolism of resistant plants compared to susceptible plants. We conclude that in addition to genetic resistance, additional mechanisms of metabolic adaptation and detoxification can occur in multiple-resistant weed plants.</description><subject>Acetolactate synthase</subject><subject>Active sites</subject><subject>Agriculture</subject><subject>Amino acid sequence</subject><subject>Avena fatua</subject><subject>Biomedical and Life Sciences</subject><subject>Biotypes</subject><subject>Catalysis</subject><subject>Coenzyme A</subject><subject>Detoxification</subject><subject>Enzymes</subject><subject>Fingerprinting</subject><subject>Fingerprints</subject><subject>Herbicide resistance</subject><subject>Herbicides</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolism</subject><subject>Mutation</subject><subject>Original Article</subject><subject>Plant Anatomy/Development</subject><subject>Plant Biochemistry</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><issn>0137-5881</issn><issn>1861-1664</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc9u1DAQxi1EJZaWB-BmiUs5GDxx4k2Oq6UtlVbiUDhb43-sqzQOtrdV3oZHrbeLxKmnGWl-34zm-wj5CPwLcL7-mgHWomccetbIAdjyhqygl8BAyvYtWXEQa9b1Pbwj73O-57wTnZQr8vdbPOjR0b1LOphgHUsuh1xwKlSHWJbZZRo9fQqjpRELvdw8ugmpx3LAz9SGPI-4ULPHhKa4VKXB0AdXUMexdj5Mv12aU5hKptr5mBzFyVL0FaY4z-NSCbrZbjE79jLa7O5YmPZBhxJTviBnHsfsPvyr5-TX9dXP7Xe2-3Fzu93smBEgC0OvuQXotUMYoPFm0GAHRMtta9EKY6WxLYBvbGfbDrzsRGsFDI3VWuNanJNPp71zin8OLhd1Hw9pqidVw9u25VKIplJwokyKOSfnVX3tAdOigKtjEOoUhKpBqGMQaqma5qTJRxuqG_83vy56BtW0j_U</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Torres-García, Jesús R.</creator><creator>Tafoya-Razo, J. Antonio</creator><creator>Velázquez-Márquez, Sabina</creator><creator>Tiessen, Axel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5572-4274</orcidid></search><sort><creationdate>20180601</creationdate><title>Double herbicide-resistant biotypes of wild oat (Avena fatua) display characteristic metabolic fingerprints before and after applying ACCase- and ALS-inhibitors</title><author>Torres-García, Jesús R. ; Tafoya-Razo, J. Antonio ; Velázquez-Márquez, Sabina ; Tiessen, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-afb0d118bea1912fc9b1d9aad0d4dad3cd6cd411f2d5d451f6534d3192dbbba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetolactate synthase</topic><topic>Active sites</topic><topic>Agriculture</topic><topic>Amino acid sequence</topic><topic>Avena fatua</topic><topic>Biomedical and Life Sciences</topic><topic>Biotypes</topic><topic>Catalysis</topic><topic>Coenzyme A</topic><topic>Detoxification</topic><topic>Enzymes</topic><topic>Fingerprinting</topic><topic>Fingerprints</topic><topic>Herbicide resistance</topic><topic>Herbicides</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolism</topic><topic>Mutation</topic><topic>Original Article</topic><topic>Plant Anatomy/Development</topic><topic>Plant Biochemistry</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torres-García, Jesús R.</creatorcontrib><creatorcontrib>Tafoya-Razo, J. Antonio</creatorcontrib><creatorcontrib>Velázquez-Márquez, Sabina</creatorcontrib><creatorcontrib>Tiessen, Axel</creatorcontrib><collection>CrossRef</collection><jtitle>Acta physiologiae plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torres-García, Jesús R.</au><au>Tafoya-Razo, J. Antonio</au><au>Velázquez-Márquez, Sabina</au><au>Tiessen, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double herbicide-resistant biotypes of wild oat (Avena fatua) display characteristic metabolic fingerprints before and after applying ACCase- and ALS-inhibitors</atitle><jtitle>Acta physiologiae plantarum</jtitle><stitle>Acta Physiol Plant</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>40</volume><issue>6</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><artnum>119</artnum><issn>0137-5881</issn><eissn>1861-1664</eissn><abstract>Plant herbicides inhibit specific enzymes of biosynthetic metabolism, such as acetyl-coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS). Herbicide resistance can be caused by point mutations at the binding domains, catalytic sites and other regions within multimeric enzymes. Direct-injection electrospray mass spectrometry was used for high-throughput metabolic fingerprinting for finding significant differences among biotypes in response to herbicide application. A Mexican biotype of wild oat ( Avena fatua) that displays multiple resistances to ACCase- and ALS-inhibiting herbicides was characterized. The dose–response test showed that the double-resistant biotype had a resistance index of 3.58 for pinoxaden and 3.53 for mesosulfuron-methyl. Resistance was accompanied by characteristic mutations at the site of action: an I-1781-L substitution occurred in the ACCase enzyme and an S-653-N mutation was identified within the ALS enzyme. Other mutations were also detected in the genes of the Mexican biotypes. The ionomic fingerprint showed that the multiple-resistant biotype had a markedly different metabolic pattern under control conditions and that this difference was accentuated after herbicide treatment. This demonstrates that single changes of amino acid sequences can produce several holistic modifications in the metabolism of resistant plants compared to susceptible plants. We conclude that in addition to genetic resistance, additional mechanisms of metabolic adaptation and detoxification can occur in multiple-resistant weed plants.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11738-018-2691-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5572-4274</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0137-5881
ispartof Acta physiologiae plantarum, 2018-06, Vol.40 (6), p.1-12, Article 119
issn 0137-5881
1861-1664
language eng
recordid cdi_proquest_journals_2044406332
source SpringerLink Journals
subjects Acetolactate synthase
Active sites
Agriculture
Amino acid sequence
Avena fatua
Biomedical and Life Sciences
Biotypes
Catalysis
Coenzyme A
Detoxification
Enzymes
Fingerprinting
Fingerprints
Herbicide resistance
Herbicides
Life Sciences
Mass spectrometry
Mass spectroscopy
Metabolism
Mutation
Original Article
Plant Anatomy/Development
Plant Biochemistry
Plant Genetics and Genomics
Plant Pathology
Plant Physiology
title Double herbicide-resistant biotypes of wild oat (Avena fatua) display characteristic metabolic fingerprints before and after applying ACCase- and ALS-inhibitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double%20herbicide-resistant%20biotypes%20of%20wild%20oat%20(Avena%20fatua)%20display%20characteristic%20metabolic%20fingerprints%20before%20and%20after%20applying%20ACCase-%20and%20ALS-inhibitors&rft.jtitle=Acta%20physiologiae%20plantarum&rft.au=Torres-Garc%C3%ADa,%20Jes%C3%BAs%20R.&rft.date=2018-06-01&rft.volume=40&rft.issue=6&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.artnum=119&rft.issn=0137-5881&rft.eissn=1861-1664&rft_id=info:doi/10.1007/s11738-018-2691-y&rft_dat=%3Cproquest_cross%3E2044406332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2044406332&rft_id=info:pmid/&rfr_iscdi=true