Real-time parallel image processing applications on multicore CPUs with OpenMP and GPGPU with CUDA

This paper presents real-time image processing applications using multicore and multiprocessing technologies. To this end, parallel image segmentation was performed on many images covering the entire surface of the same metallic and cylindrical moving objects. Experimental results on multicore CPU w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2018-06, Vol.74 (6), p.2255-2275
Hauptverfasser: Aydin, Semra, Samet, Refik, Bay, Omer Faruk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2275
container_issue 6
container_start_page 2255
container_title The Journal of supercomputing
container_volume 74
creator Aydin, Semra
Samet, Refik
Bay, Omer Faruk
description This paper presents real-time image processing applications using multicore and multiprocessing technologies. To this end, parallel image segmentation was performed on many images covering the entire surface of the same metallic and cylindrical moving objects. Experimental results on multicore CPU with OpenMP platform showed that by increasing the chunk size, the execution time decreases approximately four times in comparison with serial computing. The same experiments were implemented on GPGPU using four techniques: (1) Single image transmission with single pixel processing; (2) Single image transmission with multiple pixel processing; (3) Multiple image transmission with single pixel processing; and (4) Multiple image transmission with multiple pixel processing. All techniques were implemented on GeForce, Tesla K20 and Tesla K40. Experimental results of GPU with CUDA platform showed that by increasing the core number speedup is increased. Tesla K40 gave the best results of 35 and 12 (for the first technique), 36 and 13 (for the second technique), 54 and 16 (for the third technique), 71 and 17 (for the fourth technique) times improvement without and with data transmission time in comparison with serial computing. As a result, users are suggested to use Tesla K40 GPU and Multiple image transmission with multiple pixel processing to get the maximum performance.
doi_str_mv 10.1007/s11227-017-2168-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2044406116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2044406116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-980d5d417cb8416433cfbea9677a8396b736649717098b6c3d577dfc1a672ddd3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8Bz9FMkibtcam6CsoWseeQJunapdvWpIv47-1SwZOnYYb33sx8CF0DvQVK1V0EYEwRCoowkCmRJ2gBieKEilScogXNGCVpItg5uohxRykVXPEFqt68acnY7D0eTDBt61vc7M12akNvfYxNt8VmGNrGmrHpu4j7Du8P7djYPnicF2XEX834gTeD714LbDqH18W6KOdpXt6vLtFZbdror37rEpWPD-_5E3nZrJ_z1QuxHORIspS6xAlQtkoFSMG5rStvMqmUSXkmK8WlFJkCRbO0kpa7RClXWzBSMeccX6KbOXe6_PPg46h3_SF000rNqBCCSgA5qWBW2dDHGHythzA9HL41UH1EqWeUekKpjyj10cNmT5y03daHv-T_TT-vy3UF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2044406116</pqid></control><display><type>article</type><title>Real-time parallel image processing applications on multicore CPUs with OpenMP and GPGPU with CUDA</title><source>SpringerLink Journals - AutoHoldings</source><creator>Aydin, Semra ; Samet, Refik ; Bay, Omer Faruk</creator><creatorcontrib>Aydin, Semra ; Samet, Refik ; Bay, Omer Faruk</creatorcontrib><description>This paper presents real-time image processing applications using multicore and multiprocessing technologies. To this end, parallel image segmentation was performed on many images covering the entire surface of the same metallic and cylindrical moving objects. Experimental results on multicore CPU with OpenMP platform showed that by increasing the chunk size, the execution time decreases approximately four times in comparison with serial computing. The same experiments were implemented on GPGPU using four techniques: (1) Single image transmission with single pixel processing; (2) Single image transmission with multiple pixel processing; (3) Multiple image transmission with single pixel processing; and (4) Multiple image transmission with multiple pixel processing. All techniques were implemented on GeForce, Tesla K20 and Tesla K40. Experimental results of GPU with CUDA platform showed that by increasing the core number speedup is increased. Tesla K40 gave the best results of 35 and 12 (for the first technique), 36 and 13 (for the second technique), 54 and 16 (for the third technique), 71 and 17 (for the fourth technique) times improvement without and with data transmission time in comparison with serial computing. As a result, users are suggested to use Tesla K40 GPU and Multiple image transmission with multiple pixel processing to get the maximum performance.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-017-2168-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Central processing units ; Compilers ; Computer Science ; Computing time ; CPUs ; Data transmission ; Emergency services ; Image processing ; Image segmentation ; Image transmission ; Interpreters ; Joint ventures ; Microprocessors ; Multiprocessing ; Pixels ; Processor Architectures ; Programming Languages ; Real time</subject><ispartof>The Journal of supercomputing, 2018-06, Vol.74 (6), p.2255-2275</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-980d5d417cb8416433cfbea9677a8396b736649717098b6c3d577dfc1a672ddd3</citedby><cites>FETCH-LOGICAL-c316t-980d5d417cb8416433cfbea9677a8396b736649717098b6c3d577dfc1a672ddd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-017-2168-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-017-2168-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Aydin, Semra</creatorcontrib><creatorcontrib>Samet, Refik</creatorcontrib><creatorcontrib>Bay, Omer Faruk</creatorcontrib><title>Real-time parallel image processing applications on multicore CPUs with OpenMP and GPGPU with CUDA</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>This paper presents real-time image processing applications using multicore and multiprocessing technologies. To this end, parallel image segmentation was performed on many images covering the entire surface of the same metallic and cylindrical moving objects. Experimental results on multicore CPU with OpenMP platform showed that by increasing the chunk size, the execution time decreases approximately four times in comparison with serial computing. The same experiments were implemented on GPGPU using four techniques: (1) Single image transmission with single pixel processing; (2) Single image transmission with multiple pixel processing; (3) Multiple image transmission with single pixel processing; and (4) Multiple image transmission with multiple pixel processing. All techniques were implemented on GeForce, Tesla K20 and Tesla K40. Experimental results of GPU with CUDA platform showed that by increasing the core number speedup is increased. Tesla K40 gave the best results of 35 and 12 (for the first technique), 36 and 13 (for the second technique), 54 and 16 (for the third technique), 71 and 17 (for the fourth technique) times improvement without and with data transmission time in comparison with serial computing. As a result, users are suggested to use Tesla K40 GPU and Multiple image transmission with multiple pixel processing to get the maximum performance.</description><subject>Central processing units</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Computing time</subject><subject>CPUs</subject><subject>Data transmission</subject><subject>Emergency services</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Image transmission</subject><subject>Interpreters</subject><subject>Joint ventures</subject><subject>Microprocessors</subject><subject>Multiprocessing</subject><subject>Pixels</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Real time</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK7-AG8Bz9FMkibtcam6CsoWseeQJunapdvWpIv47-1SwZOnYYb33sx8CF0DvQVK1V0EYEwRCoowkCmRJ2gBieKEilScogXNGCVpItg5uohxRykVXPEFqt68acnY7D0eTDBt61vc7M12akNvfYxNt8VmGNrGmrHpu4j7Du8P7djYPnicF2XEX834gTeD714LbDqH18W6KOdpXt6vLtFZbdror37rEpWPD-_5E3nZrJ_z1QuxHORIspS6xAlQtkoFSMG5rStvMqmUSXkmK8WlFJkCRbO0kpa7RClXWzBSMeccX6KbOXe6_PPg46h3_SF000rNqBCCSgA5qWBW2dDHGHythzA9HL41UH1EqWeUekKpjyj10cNmT5y03daHv-T_TT-vy3UF</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Aydin, Semra</creator><creator>Samet, Refik</creator><creator>Bay, Omer Faruk</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Real-time parallel image processing applications on multicore CPUs with OpenMP and GPGPU with CUDA</title><author>Aydin, Semra ; Samet, Refik ; Bay, Omer Faruk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-980d5d417cb8416433cfbea9677a8396b736649717098b6c3d577dfc1a672ddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Central processing units</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Computing time</topic><topic>CPUs</topic><topic>Data transmission</topic><topic>Emergency services</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Image transmission</topic><topic>Interpreters</topic><topic>Joint ventures</topic><topic>Microprocessors</topic><topic>Multiprocessing</topic><topic>Pixels</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Real time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aydin, Semra</creatorcontrib><creatorcontrib>Samet, Refik</creatorcontrib><creatorcontrib>Bay, Omer Faruk</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aydin, Semra</au><au>Samet, Refik</au><au>Bay, Omer Faruk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time parallel image processing applications on multicore CPUs with OpenMP and GPGPU with CUDA</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>74</volume><issue>6</issue><spage>2255</spage><epage>2275</epage><pages>2255-2275</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>This paper presents real-time image processing applications using multicore and multiprocessing technologies. To this end, parallel image segmentation was performed on many images covering the entire surface of the same metallic and cylindrical moving objects. Experimental results on multicore CPU with OpenMP platform showed that by increasing the chunk size, the execution time decreases approximately four times in comparison with serial computing. The same experiments were implemented on GPGPU using four techniques: (1) Single image transmission with single pixel processing; (2) Single image transmission with multiple pixel processing; (3) Multiple image transmission with single pixel processing; and (4) Multiple image transmission with multiple pixel processing. All techniques were implemented on GeForce, Tesla K20 and Tesla K40. Experimental results of GPU with CUDA platform showed that by increasing the core number speedup is increased. Tesla K40 gave the best results of 35 and 12 (for the first technique), 36 and 13 (for the second technique), 54 and 16 (for the third technique), 71 and 17 (for the fourth technique) times improvement without and with data transmission time in comparison with serial computing. As a result, users are suggested to use Tesla K40 GPU and Multiple image transmission with multiple pixel processing to get the maximum performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-017-2168-6</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2018-06, Vol.74 (6), p.2255-2275
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2044406116
source SpringerLink Journals - AutoHoldings
subjects Central processing units
Compilers
Computer Science
Computing time
CPUs
Data transmission
Emergency services
Image processing
Image segmentation
Image transmission
Interpreters
Joint ventures
Microprocessors
Multiprocessing
Pixels
Processor Architectures
Programming Languages
Real time
title Real-time parallel image processing applications on multicore CPUs with OpenMP and GPGPU with CUDA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20parallel%20image%20processing%20applications%20on%20multicore%20CPUs%20with%20OpenMP%20and%20GPGPU%20with%20CUDA&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Aydin,%20Semra&rft.date=2018-06-01&rft.volume=74&rft.issue=6&rft.spage=2255&rft.epage=2275&rft.pages=2255-2275&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-017-2168-6&rft_dat=%3Cproquest_cross%3E2044406116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2044406116&rft_id=info:pmid/&rfr_iscdi=true