Cellular differentiation of non-transformed intestinal epithelial cells is regulated by Lactobacillus rhamnosus and L. casei strains

The aim of this study was to characterize an in vitro modulating effect of three commensal Lactobacillus strains on cellular differentiation of non-transformed crypt-like rat small intestinal cell line IEC-18. IEC-18 was grown on extracellular matrix, with or without presence of Lactobacillus strain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological research 2018-01, Vol.67 (2), p.261-273
Hauptverfasser: Kolinska, J, Zakostelecka, M, Zemanova, Z, Lisa, V, Golias, J, Kozakova, H, Dvorak, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 273
container_issue 2
container_start_page 261
container_title Physiological research
container_volume 67
creator Kolinska, J
Zakostelecka, M
Zemanova, Z
Lisa, V
Golias, J
Kozakova, H
Dvorak, B
description The aim of this study was to characterize an in vitro modulating effect of three commensal Lactobacillus strains on cellular differentiation of non-transformed crypt-like rat small intestinal cell line IEC-18. IEC-18 was grown on extracellular matrix, with or without presence of Lactobacillus strains. Gene expression of IEC-18 bacterial detection system - such as Toll-like receptors TLR-2, TLR-4, signal adapter MyD88, cytoplasmic NOD2 receptor, inflammatory cytokines IL-18, IL-1beta, chemokine IL-8 and enzyme caspase-1 - was evaluated using real-time PCR. Expression and localization of TLR-2, TLR-4, IL-18 and caspase-1 proteins was demonstrated by Western blotting and immunofluorescent staining. Secretion of IL-18 to apical and basolateral surfaces was assayed by ELISA. Our results suggested that L. casei LOCK0919 accelerated differentiation of IEC-18 by stimulating TLR-2, TLR-4, MyD88, IL-18, caspase-1 mRNAs and proteins. L. casei LOCK0919 increased expression and transfer of villin and beta-catenin from cytoplasm to cell membrane. Presence of L. rhamnosus LOCK0900 resulted in detachment of IEC-18 layer from extracellular matrix leading to induction of IL-1beta, of TLR-2 and IL-8 mRNAs and stimulation of MyD88, caspase-1 and cytosolic receptor NOD2 mRNAs. L. rhamnosus LOCK0908 was not recognized by TLR-2 or TLR-4 receptors. Lactobacilli-IEC-18 crosstalk enhanced immune and barrier mucosal functions.
doi_str_mv 10.33549/physiolres.933643
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2044291128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2044291128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-bf19e805d226b86834fc20399dc448e2a3a5b830395a45531c6b436753efcfe73</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhi0EoqXwBxiQJeYUx-ck9ogqvqRILDBHjmNTV6ldbGfozg_HogWmO-nee6T3Qei6JEuAiom73XofrR-DjksBUDM4QfOSE1oI0cApmhNe04IzwmfoIsYNIbQhDZyjGRVAoC5hjr5WehynUQY8WGN00C5Zmax32BvsvCtSkC4aH7Z6wNYlHZN1csR6Z9NajzavKhMithEH_ZFJKQf7PW6lSr6XymZ8Pq3l1vmYN-kG3C6xklFbHDPduniJzowco746zgV6f3x4Wz0X7evTy-q-LRQwmorelEJzUg2U1j2vOTCjKAEhBsUY11SCrHqem4lKsqqCUtU9g7qpQBtldAMLdHvg7oL_nHKVbuOnkOvEjhLGqChLynOKHlIq-BiDNt0u2K0M-64k3Y_47l98dxCfn26O6KnPqv5efk3DN4SjhDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2044291128</pqid></control><display><type>article</type><title>Cellular differentiation of non-transformed intestinal epithelial cells is regulated by Lactobacillus rhamnosus and L. casei strains</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kolinska, J ; Zakostelecka, M ; Zemanova, Z ; Lisa, V ; Golias, J ; Kozakova, H ; Dvorak, B</creator><creatorcontrib>Kolinska, J ; Zakostelecka, M ; Zemanova, Z ; Lisa, V ; Golias, J ; Kozakova, H ; Dvorak, B</creatorcontrib><description>The aim of this study was to characterize an in vitro modulating effect of three commensal Lactobacillus strains on cellular differentiation of non-transformed crypt-like rat small intestinal cell line IEC-18. IEC-18 was grown on extracellular matrix, with or without presence of Lactobacillus strains. Gene expression of IEC-18 bacterial detection system - such as Toll-like receptors TLR-2, TLR-4, signal adapter MyD88, cytoplasmic NOD2 receptor, inflammatory cytokines IL-18, IL-1beta, chemokine IL-8 and enzyme caspase-1 - was evaluated using real-time PCR. Expression and localization of TLR-2, TLR-4, IL-18 and caspase-1 proteins was demonstrated by Western blotting and immunofluorescent staining. Secretion of IL-18 to apical and basolateral surfaces was assayed by ELISA. Our results suggested that L. casei LOCK0919 accelerated differentiation of IEC-18 by stimulating TLR-2, TLR-4, MyD88, IL-18, caspase-1 mRNAs and proteins. L. casei LOCK0919 increased expression and transfer of villin and beta-catenin from cytoplasm to cell membrane. Presence of L. rhamnosus LOCK0900 resulted in detachment of IEC-18 layer from extracellular matrix leading to induction of IL-1beta, of TLR-2 and IL-8 mRNAs and stimulation of MyD88, caspase-1 and cytosolic receptor NOD2 mRNAs. L. rhamnosus LOCK0908 was not recognized by TLR-2 or TLR-4 receptors. Lactobacilli-IEC-18 crosstalk enhanced immune and barrier mucosal functions.</description><identifier>ISSN: 0862-8408</identifier><identifier>EISSN: 1802-9973</identifier><identifier>DOI: 10.33549/physiolres.933643</identifier><identifier>PMID: 29303613</identifier><language>eng</language><publisher>Czech Republic: Institute of Physiology</publisher><subject>Animals ; Apoptosis ; Bacteria ; beta Catenin - biosynthesis ; Caspase ; Caspase 1 - biosynthesis ; Caspase-1 ; Cell adhesion &amp; migration ; Cell Differentiation - drug effects ; Chemokines ; Cytokines ; Cytokines - biosynthesis ; Cytoplasm ; Enzyme-linked immunosorbent assay ; Enzymes ; Epithelial cells ; Epithelial Cells - drug effects ; Extracellular matrix ; Gene expression ; Gene Expression Regulation - drug effects ; Genotype &amp; phenotype ; Homeostasis ; Inflammation ; Interleukin 18 ; Interleukin 8 ; Interleukin-18 - biosynthesis ; Intestinal Mucosa - cytology ; Intestinal Mucosa - drug effects ; Intestine ; Lactobacillus ; Lactobacillus casei ; Lactobacillus rhamnosus ; Localization ; Microfilament Proteins - biosynthesis ; Mucosal immunity ; MyD88 protein ; NOD2 protein ; Pattern recognition ; Plasma ; Probiotics ; Probiotics - pharmacology ; Proteins ; Rats ; RNA, Messenger - biosynthesis ; Rodents ; Small intestine ; Strains (organisms) ; Subcellular Fractions - metabolism ; TLR2 protein ; Toll-like receptors ; Toll-Like Receptors - biosynthesis ; Toll-Like Receptors - drug effects ; Western blotting</subject><ispartof>Physiological research, 2018-01, Vol.67 (2), p.261-273</ispartof><rights>Copyright Institute of Physiology 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-bf19e805d226b86834fc20399dc448e2a3a5b830395a45531c6b436753efcfe73</citedby><cites>FETCH-LOGICAL-c342t-bf19e805d226b86834fc20399dc448e2a3a5b830395a45531c6b436753efcfe73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29303613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolinska, J</creatorcontrib><creatorcontrib>Zakostelecka, M</creatorcontrib><creatorcontrib>Zemanova, Z</creatorcontrib><creatorcontrib>Lisa, V</creatorcontrib><creatorcontrib>Golias, J</creatorcontrib><creatorcontrib>Kozakova, H</creatorcontrib><creatorcontrib>Dvorak, B</creatorcontrib><title>Cellular differentiation of non-transformed intestinal epithelial cells is regulated by Lactobacillus rhamnosus and L. casei strains</title><title>Physiological research</title><addtitle>Physiol Res</addtitle><description>The aim of this study was to characterize an in vitro modulating effect of three commensal Lactobacillus strains on cellular differentiation of non-transformed crypt-like rat small intestinal cell line IEC-18. IEC-18 was grown on extracellular matrix, with or without presence of Lactobacillus strains. Gene expression of IEC-18 bacterial detection system - such as Toll-like receptors TLR-2, TLR-4, signal adapter MyD88, cytoplasmic NOD2 receptor, inflammatory cytokines IL-18, IL-1beta, chemokine IL-8 and enzyme caspase-1 - was evaluated using real-time PCR. Expression and localization of TLR-2, TLR-4, IL-18 and caspase-1 proteins was demonstrated by Western blotting and immunofluorescent staining. Secretion of IL-18 to apical and basolateral surfaces was assayed by ELISA. Our results suggested that L. casei LOCK0919 accelerated differentiation of IEC-18 by stimulating TLR-2, TLR-4, MyD88, IL-18, caspase-1 mRNAs and proteins. L. casei LOCK0919 increased expression and transfer of villin and beta-catenin from cytoplasm to cell membrane. Presence of L. rhamnosus LOCK0900 resulted in detachment of IEC-18 layer from extracellular matrix leading to induction of IL-1beta, of TLR-2 and IL-8 mRNAs and stimulation of MyD88, caspase-1 and cytosolic receptor NOD2 mRNAs. L. rhamnosus LOCK0908 was not recognized by TLR-2 or TLR-4 receptors. Lactobacilli-IEC-18 crosstalk enhanced immune and barrier mucosal functions.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Bacteria</subject><subject>beta Catenin - biosynthesis</subject><subject>Caspase</subject><subject>Caspase 1 - biosynthesis</subject><subject>Caspase-1</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Differentiation - drug effects</subject><subject>Chemokines</subject><subject>Cytokines</subject><subject>Cytokines - biosynthesis</subject><subject>Cytoplasm</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Enzymes</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - drug effects</subject><subject>Extracellular matrix</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Genotype &amp; phenotype</subject><subject>Homeostasis</subject><subject>Inflammation</subject><subject>Interleukin 18</subject><subject>Interleukin 8</subject><subject>Interleukin-18 - biosynthesis</subject><subject>Intestinal Mucosa - cytology</subject><subject>Intestinal Mucosa - drug effects</subject><subject>Intestine</subject><subject>Lactobacillus</subject><subject>Lactobacillus casei</subject><subject>Lactobacillus rhamnosus</subject><subject>Localization</subject><subject>Microfilament Proteins - biosynthesis</subject><subject>Mucosal immunity</subject><subject>MyD88 protein</subject><subject>NOD2 protein</subject><subject>Pattern recognition</subject><subject>Plasma</subject><subject>Probiotics</subject><subject>Probiotics - pharmacology</subject><subject>Proteins</subject><subject>Rats</subject><subject>RNA, Messenger - biosynthesis</subject><subject>Rodents</subject><subject>Small intestine</subject><subject>Strains (organisms)</subject><subject>Subcellular Fractions - metabolism</subject><subject>TLR2 protein</subject><subject>Toll-like receptors</subject><subject>Toll-Like Receptors - biosynthesis</subject><subject>Toll-Like Receptors - drug effects</subject><subject>Western blotting</subject><issn>0862-8408</issn><issn>1802-9973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkD1PwzAQhi0EoqXwBxiQJeYUx-ck9ogqvqRILDBHjmNTV6ldbGfozg_HogWmO-nee6T3Qei6JEuAiom73XofrR-DjksBUDM4QfOSE1oI0cApmhNe04IzwmfoIsYNIbQhDZyjGRVAoC5hjr5WehynUQY8WGN00C5Zmax32BvsvCtSkC4aH7Z6wNYlHZN1csR6Z9NajzavKhMithEH_ZFJKQf7PW6lSr6XymZ8Pq3l1vmYN-kG3C6xklFbHDPduniJzowco746zgV6f3x4Wz0X7evTy-q-LRQwmorelEJzUg2U1j2vOTCjKAEhBsUY11SCrHqem4lKsqqCUtU9g7qpQBtldAMLdHvg7oL_nHKVbuOnkOvEjhLGqChLynOKHlIq-BiDNt0u2K0M-64k3Y_47l98dxCfn26O6KnPqv5efk3DN4SjhDQ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Kolinska, J</creator><creator>Zakostelecka, M</creator><creator>Zemanova, Z</creator><creator>Lisa, V</creator><creator>Golias, J</creator><creator>Kozakova, H</creator><creator>Dvorak, B</creator><general>Institute of Physiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20180101</creationdate><title>Cellular differentiation of non-transformed intestinal epithelial cells is regulated by Lactobacillus rhamnosus and L. casei strains</title><author>Kolinska, J ; Zakostelecka, M ; Zemanova, Z ; Lisa, V ; Golias, J ; Kozakova, H ; Dvorak, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-bf19e805d226b86834fc20399dc448e2a3a5b830395a45531c6b436753efcfe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Bacteria</topic><topic>beta Catenin - biosynthesis</topic><topic>Caspase</topic><topic>Caspase 1 - biosynthesis</topic><topic>Caspase-1</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Differentiation - drug effects</topic><topic>Chemokines</topic><topic>Cytokines</topic><topic>Cytokines - biosynthesis</topic><topic>Cytoplasm</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Enzymes</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - drug effects</topic><topic>Extracellular matrix</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Genotype &amp; phenotype</topic><topic>Homeostasis</topic><topic>Inflammation</topic><topic>Interleukin 18</topic><topic>Interleukin 8</topic><topic>Interleukin-18 - biosynthesis</topic><topic>Intestinal Mucosa - cytology</topic><topic>Intestinal Mucosa - drug effects</topic><topic>Intestine</topic><topic>Lactobacillus</topic><topic>Lactobacillus casei</topic><topic>Lactobacillus rhamnosus</topic><topic>Localization</topic><topic>Microfilament Proteins - biosynthesis</topic><topic>Mucosal immunity</topic><topic>MyD88 protein</topic><topic>NOD2 protein</topic><topic>Pattern recognition</topic><topic>Plasma</topic><topic>Probiotics</topic><topic>Probiotics - pharmacology</topic><topic>Proteins</topic><topic>Rats</topic><topic>RNA, Messenger - biosynthesis</topic><topic>Rodents</topic><topic>Small intestine</topic><topic>Strains (organisms)</topic><topic>Subcellular Fractions - metabolism</topic><topic>TLR2 protein</topic><topic>Toll-like receptors</topic><topic>Toll-Like Receptors - biosynthesis</topic><topic>Toll-Like Receptors - drug effects</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolinska, J</creatorcontrib><creatorcontrib>Zakostelecka, M</creatorcontrib><creatorcontrib>Zemanova, Z</creatorcontrib><creatorcontrib>Lisa, V</creatorcontrib><creatorcontrib>Golias, J</creatorcontrib><creatorcontrib>Kozakova, H</creatorcontrib><creatorcontrib>Dvorak, B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Physiological research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolinska, J</au><au>Zakostelecka, M</au><au>Zemanova, Z</au><au>Lisa, V</au><au>Golias, J</au><au>Kozakova, H</au><au>Dvorak, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular differentiation of non-transformed intestinal epithelial cells is regulated by Lactobacillus rhamnosus and L. casei strains</atitle><jtitle>Physiological research</jtitle><addtitle>Physiol Res</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>67</volume><issue>2</issue><spage>261</spage><epage>273</epage><pages>261-273</pages><issn>0862-8408</issn><eissn>1802-9973</eissn><abstract>The aim of this study was to characterize an in vitro modulating effect of three commensal Lactobacillus strains on cellular differentiation of non-transformed crypt-like rat small intestinal cell line IEC-18. IEC-18 was grown on extracellular matrix, with or without presence of Lactobacillus strains. Gene expression of IEC-18 bacterial detection system - such as Toll-like receptors TLR-2, TLR-4, signal adapter MyD88, cytoplasmic NOD2 receptor, inflammatory cytokines IL-18, IL-1beta, chemokine IL-8 and enzyme caspase-1 - was evaluated using real-time PCR. Expression and localization of TLR-2, TLR-4, IL-18 and caspase-1 proteins was demonstrated by Western blotting and immunofluorescent staining. Secretion of IL-18 to apical and basolateral surfaces was assayed by ELISA. Our results suggested that L. casei LOCK0919 accelerated differentiation of IEC-18 by stimulating TLR-2, TLR-4, MyD88, IL-18, caspase-1 mRNAs and proteins. L. casei LOCK0919 increased expression and transfer of villin and beta-catenin from cytoplasm to cell membrane. Presence of L. rhamnosus LOCK0900 resulted in detachment of IEC-18 layer from extracellular matrix leading to induction of IL-1beta, of TLR-2 and IL-8 mRNAs and stimulation of MyD88, caspase-1 and cytosolic receptor NOD2 mRNAs. L. rhamnosus LOCK0908 was not recognized by TLR-2 or TLR-4 receptors. Lactobacilli-IEC-18 crosstalk enhanced immune and barrier mucosal functions.</abstract><cop>Czech Republic</cop><pub>Institute of Physiology</pub><pmid>29303613</pmid><doi>10.33549/physiolres.933643</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0862-8408
ispartof Physiological research, 2018-01, Vol.67 (2), p.261-273
issn 0862-8408
1802-9973
language eng
recordid cdi_proquest_journals_2044291128
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Animals
Apoptosis
Bacteria
beta Catenin - biosynthesis
Caspase
Caspase 1 - biosynthesis
Caspase-1
Cell adhesion & migration
Cell Differentiation - drug effects
Chemokines
Cytokines
Cytokines - biosynthesis
Cytoplasm
Enzyme-linked immunosorbent assay
Enzymes
Epithelial cells
Epithelial Cells - drug effects
Extracellular matrix
Gene expression
Gene Expression Regulation - drug effects
Genotype & phenotype
Homeostasis
Inflammation
Interleukin 18
Interleukin 8
Interleukin-18 - biosynthesis
Intestinal Mucosa - cytology
Intestinal Mucosa - drug effects
Intestine
Lactobacillus
Lactobacillus casei
Lactobacillus rhamnosus
Localization
Microfilament Proteins - biosynthesis
Mucosal immunity
MyD88 protein
NOD2 protein
Pattern recognition
Plasma
Probiotics
Probiotics - pharmacology
Proteins
Rats
RNA, Messenger - biosynthesis
Rodents
Small intestine
Strains (organisms)
Subcellular Fractions - metabolism
TLR2 protein
Toll-like receptors
Toll-Like Receptors - biosynthesis
Toll-Like Receptors - drug effects
Western blotting
title Cellular differentiation of non-transformed intestinal epithelial cells is regulated by Lactobacillus rhamnosus and L. casei strains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20differentiation%20of%20non-transformed%20intestinal%20epithelial%20cells%20is%20regulated%20by%20Lactobacillus%20rhamnosus%20and%20L.%20casei%20strains&rft.jtitle=Physiological%20research&rft.au=Kolinska,%20J&rft.date=2018-01-01&rft.volume=67&rft.issue=2&rft.spage=261&rft.epage=273&rft.pages=261-273&rft.issn=0862-8408&rft.eissn=1802-9973&rft_id=info:doi/10.33549/physiolres.933643&rft_dat=%3Cproquest_cross%3E2044291128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2044291128&rft_id=info:pmid/29303613&rfr_iscdi=true