Automatic segmentation and summarization for videos taken with smart glasses

This paper discusses the topic of automatic segmentation and extraction of important segments of videos taken with Google Glasses. Using the information from both the video images and additional sensor data that are recorded concurrently, we devise methods that automatically divide the video into co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2018-05, Vol.77 (10), p.12679-12699
Hauptverfasser: Chiu, Yen-Chia, Liu, Li-Yi, Wang, Tsaipei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12699
container_issue 10
container_start_page 12679
container_title Multimedia tools and applications
container_volume 77
creator Chiu, Yen-Chia
Liu, Li-Yi
Wang, Tsaipei
description This paper discusses the topic of automatic segmentation and extraction of important segments of videos taken with Google Glasses. Using the information from both the video images and additional sensor data that are recorded concurrently, we devise methods that automatically divide the video into coherent segments and estimate the importance of the each segment. Such information then enables automatic generation of video summary that contains only the important segments. The features used include colors, image details, motions, and speeches. We then train multi-layer perceptrons for the two tasks (segmentation and importance estimation) according to human annotations. We also present a systematic evaluation procedure that compares the automatic segmentation and importance estimation results with those given by multiple users and demonstrate the effectiveness of our approach.
doi_str_mv 10.1007/s11042-017-4910-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2044094322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2044094322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3329965370abb20377dec06634e8cc57263965e02af19f971aac63c35208c67a3</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSMEEmPwAbhF4hywkzZpj9PEP2kSFzhHWZaOjrUdcQaCT0-mInHi5Cf792zrMXaJcI0A5oYQoZAC0IiiRhDVEZtgaZQwRuJx1qoCYUrAU3ZGtAFAXcpiwhazfRo6l1rPKay70Kesh567fsVp33Uutt9jpxki_2hXYSCe3Fvo-WebXjllIvH11hEFOmcnjdtSuPitU_Zyd_s8fxCLp_vH-WwhvEKdhFKyrnWpDLjlUoIyZhU8aK2KUHlfGqlVHgeQrsG6qQ0657XyqpRQeW2cmrKrce8uDu_7QMluhn3s80kroSigLpSUmcKR8nEgiqGxu9jmd78sgj2EZsfQbA7NHkKzVfbI0UOZ7dch_m3-3_QD9KhulA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2044094322</pqid></control><display><type>article</type><title>Automatic segmentation and summarization for videos taken with smart glasses</title><source>SpringerNature Journals</source><creator>Chiu, Yen-Chia ; Liu, Li-Yi ; Wang, Tsaipei</creator><creatorcontrib>Chiu, Yen-Chia ; Liu, Li-Yi ; Wang, Tsaipei</creatorcontrib><description>This paper discusses the topic of automatic segmentation and extraction of important segments of videos taken with Google Glasses. Using the information from both the video images and additional sensor data that are recorded concurrently, we devise methods that automatically divide the video into coherent segments and estimate the importance of the each segment. Such information then enables automatic generation of video summary that contains only the important segments. The features used include colors, image details, motions, and speeches. We then train multi-layer perceptrons for the two tasks (segmentation and importance estimation) according to human annotations. We also present a systematic evaluation procedure that compares the automatic segmentation and importance estimation results with those given by multiple users and demonstrate the effectiveness of our approach.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-017-4910-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Annotations ; Cameras ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Image segmentation ; Multilayers ; Multimedia Information Systems ; Sensors ; Special Purpose and Application-Based Systems ; Surveillance ; User generated content</subject><ispartof>Multimedia tools and applications, 2018-05, Vol.77 (10), p.12679-12699</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3329965370abb20377dec06634e8cc57263965e02af19f971aac63c35208c67a3</citedby><cites>FETCH-LOGICAL-c316t-3329965370abb20377dec06634e8cc57263965e02af19f971aac63c35208c67a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-017-4910-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-017-4910-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chiu, Yen-Chia</creatorcontrib><creatorcontrib>Liu, Li-Yi</creatorcontrib><creatorcontrib>Wang, Tsaipei</creatorcontrib><title>Automatic segmentation and summarization for videos taken with smart glasses</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>This paper discusses the topic of automatic segmentation and extraction of important segments of videos taken with Google Glasses. Using the information from both the video images and additional sensor data that are recorded concurrently, we devise methods that automatically divide the video into coherent segments and estimate the importance of the each segment. Such information then enables automatic generation of video summary that contains only the important segments. The features used include colors, image details, motions, and speeches. We then train multi-layer perceptrons for the two tasks (segmentation and importance estimation) according to human annotations. We also present a systematic evaluation procedure that compares the automatic segmentation and importance estimation results with those given by multiple users and demonstrate the effectiveness of our approach.</description><subject>Annotations</subject><subject>Cameras</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Image segmentation</subject><subject>Multilayers</subject><subject>Multimedia Information Systems</subject><subject>Sensors</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Surveillance</subject><subject>User generated content</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9PwzAMxSMEEmPwAbhF4hywkzZpj9PEP2kSFzhHWZaOjrUdcQaCT0-mInHi5Cf792zrMXaJcI0A5oYQoZAC0IiiRhDVEZtgaZQwRuJx1qoCYUrAU3ZGtAFAXcpiwhazfRo6l1rPKay70Kesh567fsVp33Uutt9jpxki_2hXYSCe3Fvo-WebXjllIvH11hEFOmcnjdtSuPitU_Zyd_s8fxCLp_vH-WwhvEKdhFKyrnWpDLjlUoIyZhU8aK2KUHlfGqlVHgeQrsG6qQ0657XyqpRQeW2cmrKrce8uDu_7QMluhn3s80kroSigLpSUmcKR8nEgiqGxu9jmd78sgj2EZsfQbA7NHkKzVfbI0UOZ7dch_m3-3_QD9KhulA</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Chiu, Yen-Chia</creator><creator>Liu, Li-Yi</creator><creator>Wang, Tsaipei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20180501</creationdate><title>Automatic segmentation and summarization for videos taken with smart glasses</title><author>Chiu, Yen-Chia ; Liu, Li-Yi ; Wang, Tsaipei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3329965370abb20377dec06634e8cc57263965e02af19f971aac63c35208c67a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annotations</topic><topic>Cameras</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Image segmentation</topic><topic>Multilayers</topic><topic>Multimedia Information Systems</topic><topic>Sensors</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Surveillance</topic><topic>User generated content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiu, Yen-Chia</creatorcontrib><creatorcontrib>Liu, Li-Yi</creatorcontrib><creatorcontrib>Wang, Tsaipei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiu, Yen-Chia</au><au>Liu, Li-Yi</au><au>Wang, Tsaipei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic segmentation and summarization for videos taken with smart glasses</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>77</volume><issue>10</issue><spage>12679</spage><epage>12699</epage><pages>12679-12699</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>This paper discusses the topic of automatic segmentation and extraction of important segments of videos taken with Google Glasses. Using the information from both the video images and additional sensor data that are recorded concurrently, we devise methods that automatically divide the video into coherent segments and estimate the importance of the each segment. Such information then enables automatic generation of video summary that contains only the important segments. The features used include colors, image details, motions, and speeches. We then train multi-layer perceptrons for the two tasks (segmentation and importance estimation) according to human annotations. We also present a systematic evaluation procedure that compares the automatic segmentation and importance estimation results with those given by multiple users and demonstrate the effectiveness of our approach.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-017-4910-8</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2018-05, Vol.77 (10), p.12679-12699
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2044094322
source SpringerNature Journals
subjects Annotations
Cameras
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Image segmentation
Multilayers
Multimedia Information Systems
Sensors
Special Purpose and Application-Based Systems
Surveillance
User generated content
title Automatic segmentation and summarization for videos taken with smart glasses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20segmentation%20and%20summarization%20for%20videos%20taken%20with%20smart%20glasses&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Chiu,%20Yen-Chia&rft.date=2018-05-01&rft.volume=77&rft.issue=10&rft.spage=12679&rft.epage=12699&rft.pages=12679-12699&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-017-4910-8&rft_dat=%3Cproquest_cross%3E2044094322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2044094322&rft_id=info:pmid/&rfr_iscdi=true