On rate-1 and beyond-the-birthday bound secure online ciphers using tweakable block ciphers

Recently, Andreeva et al. showed that online ciphers are actually equivalent to arbitrary tweak length (ATL) tweakable block ciphers (TBCs). Within this result they gave a security preserving generic conversion from ATL TBCs to online ciphers. XTX by Minematsu and Iwata is a nice way of extending th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cryptography and communications 2018-09, Vol.10 (5), p.731-753
Hauptverfasser: Jha, Ashwin, Nandi, Mridul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 753
container_issue 5
container_start_page 731
container_title Cryptography and communications
container_volume 10
creator Jha, Ashwin
Nandi, Mridul
description Recently, Andreeva et al. showed that online ciphers are actually equivalent to arbitrary tweak length (ATL) tweakable block ciphers (TBCs). Within this result they gave a security preserving generic conversion from ATL TBCs to online ciphers. XTX by Minematsu and Iwata is a nice way of extending the tweak space of any fixed tweak length (FTL) TBC using a pAXU hash function. By combining the previous two methods one can get a FTL TBC based online cipher with security in the order of σ 2 ε where σ is the total number of blocks in all queries, and ε is the pAXU bound of the underlying hash function. In this paper we show that there are genuine practical issues which render it almost impossible to get full security using this approach. We then observe that a recent online enciphering scheme called POEx by Forler et al. is actually an implicit example of this approach. We show a flaw in the analysis of POEx which results in a birthday bound attack and invalidates the beyond-the-birthday bound OSPRP security claim. We take a slightly different approach then the one just mentioned and propose XTC which achieves OSPRP security of O (max( n σ 2 − n , σ 2 2 −( n + t ) )) where t is the tweak size and n is the block size. While doing so we present an impossibility result for t > n which can be of independent interest.
doi_str_mv 10.1007/s12095-017-0275-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2043795509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2043795509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a9b63abae5a709c3be111f1a7e0424d005ce5ec813a146be86bb6231b1ca0f453</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssTbMxHbSLFHFS6rUDaxYWLYzadMWp9iJUP-eoPBYsZor3cdIh7FLhGsEKG4SZlBqAVgIyIpBHLEJljIXmdL6-Fer4pSdpbQByHWm5IS9LgOPtiOB3IaKOzq0oRLdmoRrYreu7IG7th-cRL6PxNuwawJx3-zXFBPvUxNWvPsgu7VuR9ztWr_9cc_ZSW13iS6-75S93N89zx_FYvnwNL9dCC8x74QtXS6ts6RtAaWXjhCxRlsQqExVANqTJj9DaVHljma5c3km0aG3UCstp-xq3N3H9r2n1JlN28cwvDQZKFmUWkM5pHBM-dimFKk2-9i82XgwCOaLoRkZmoGh-WJoYOhkYycN2bCi-Lf8f-kTg0J0aQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2043795509</pqid></control><display><type>article</type><title>On rate-1 and beyond-the-birthday bound secure online ciphers using tweakable block ciphers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jha, Ashwin ; Nandi, Mridul</creator><creatorcontrib>Jha, Ashwin ; Nandi, Mridul</creatorcontrib><description>Recently, Andreeva et al. showed that online ciphers are actually equivalent to arbitrary tweak length (ATL) tweakable block ciphers (TBCs). Within this result they gave a security preserving generic conversion from ATL TBCs to online ciphers. XTX by Minematsu and Iwata is a nice way of extending the tweak space of any fixed tweak length (FTL) TBC using a pAXU hash function. By combining the previous two methods one can get a FTL TBC based online cipher with security in the order of σ 2 ε where σ is the total number of blocks in all queries, and ε is the pAXU bound of the underlying hash function. In this paper we show that there are genuine practical issues which render it almost impossible to get full security using this approach. We then observe that a recent online enciphering scheme called POEx by Forler et al. is actually an implicit example of this approach. We show a flaw in the analysis of POEx which results in a birthday bound attack and invalidates the beyond-the-birthday bound OSPRP security claim. We take a slightly different approach then the one just mentioned and propose XTC which achieves OSPRP security of O (max( n σ 2 − n , σ 2 2 −( n + t ) )) where t is the tweak size and n is the block size. While doing so we present an impossibility result for t &gt; n which can be of independent interest.</description><identifier>ISSN: 1936-2447</identifier><identifier>EISSN: 1936-2455</identifier><identifier>DOI: 10.1007/s12095-017-0275-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Circuits ; Coding and Information Theory ; Communications Engineering ; Computer Science ; Data Structures and Information Theory ; Encryption ; Information and Communication ; Mathematics of Computing ; Networks ; Security ; Special Issue on Statistics in Design and Analysis of Symmetric Ciphers</subject><ispartof>Cryptography and communications, 2018-09, Vol.10 (5), p.731-753</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a9b63abae5a709c3be111f1a7e0424d005ce5ec813a146be86bb6231b1ca0f453</citedby><cites>FETCH-LOGICAL-c316t-a9b63abae5a709c3be111f1a7e0424d005ce5ec813a146be86bb6231b1ca0f453</cites><orcidid>0000-0001-5957-2837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12095-017-0275-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12095-017-0275-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Jha, Ashwin</creatorcontrib><creatorcontrib>Nandi, Mridul</creatorcontrib><title>On rate-1 and beyond-the-birthday bound secure online ciphers using tweakable block ciphers</title><title>Cryptography and communications</title><addtitle>Cryptogr. Commun</addtitle><description>Recently, Andreeva et al. showed that online ciphers are actually equivalent to arbitrary tweak length (ATL) tweakable block ciphers (TBCs). Within this result they gave a security preserving generic conversion from ATL TBCs to online ciphers. XTX by Minematsu and Iwata is a nice way of extending the tweak space of any fixed tweak length (FTL) TBC using a pAXU hash function. By combining the previous two methods one can get a FTL TBC based online cipher with security in the order of σ 2 ε where σ is the total number of blocks in all queries, and ε is the pAXU bound of the underlying hash function. In this paper we show that there are genuine practical issues which render it almost impossible to get full security using this approach. We then observe that a recent online enciphering scheme called POEx by Forler et al. is actually an implicit example of this approach. We show a flaw in the analysis of POEx which results in a birthday bound attack and invalidates the beyond-the-birthday bound OSPRP security claim. We take a slightly different approach then the one just mentioned and propose XTC which achieves OSPRP security of O (max( n σ 2 − n , σ 2 2 −( n + t ) )) where t is the tweak size and n is the block size. While doing so we present an impossibility result for t &gt; n which can be of independent interest.</description><subject>Circuits</subject><subject>Coding and Information Theory</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Encryption</subject><subject>Information and Communication</subject><subject>Mathematics of Computing</subject><subject>Networks</subject><subject>Security</subject><subject>Special Issue on Statistics in Design and Analysis of Symmetric Ciphers</subject><issn>1936-2447</issn><issn>1936-2455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssTbMxHbSLFHFS6rUDaxYWLYzadMWp9iJUP-eoPBYsZor3cdIh7FLhGsEKG4SZlBqAVgIyIpBHLEJljIXmdL6-Fer4pSdpbQByHWm5IS9LgOPtiOB3IaKOzq0oRLdmoRrYreu7IG7th-cRL6PxNuwawJx3-zXFBPvUxNWvPsgu7VuR9ztWr_9cc_ZSW13iS6-75S93N89zx_FYvnwNL9dCC8x74QtXS6ts6RtAaWXjhCxRlsQqExVANqTJj9DaVHljma5c3km0aG3UCstp-xq3N3H9r2n1JlN28cwvDQZKFmUWkM5pHBM-dimFKk2-9i82XgwCOaLoRkZmoGh-WJoYOhkYycN2bCi-Lf8f-kTg0J0aQ</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Jha, Ashwin</creator><creator>Nandi, Mridul</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5957-2837</orcidid></search><sort><creationdate>20180901</creationdate><title>On rate-1 and beyond-the-birthday bound secure online ciphers using tweakable block ciphers</title><author>Jha, Ashwin ; Nandi, Mridul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a9b63abae5a709c3be111f1a7e0424d005ce5ec813a146be86bb6231b1ca0f453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Circuits</topic><topic>Coding and Information Theory</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Encryption</topic><topic>Information and Communication</topic><topic>Mathematics of Computing</topic><topic>Networks</topic><topic>Security</topic><topic>Special Issue on Statistics in Design and Analysis of Symmetric Ciphers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jha, Ashwin</creatorcontrib><creatorcontrib>Nandi, Mridul</creatorcontrib><collection>CrossRef</collection><jtitle>Cryptography and communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jha, Ashwin</au><au>Nandi, Mridul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On rate-1 and beyond-the-birthday bound secure online ciphers using tweakable block ciphers</atitle><jtitle>Cryptography and communications</jtitle><stitle>Cryptogr. Commun</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>10</volume><issue>5</issue><spage>731</spage><epage>753</epage><pages>731-753</pages><issn>1936-2447</issn><eissn>1936-2455</eissn><abstract>Recently, Andreeva et al. showed that online ciphers are actually equivalent to arbitrary tweak length (ATL) tweakable block ciphers (TBCs). Within this result they gave a security preserving generic conversion from ATL TBCs to online ciphers. XTX by Minematsu and Iwata is a nice way of extending the tweak space of any fixed tweak length (FTL) TBC using a pAXU hash function. By combining the previous two methods one can get a FTL TBC based online cipher with security in the order of σ 2 ε where σ is the total number of blocks in all queries, and ε is the pAXU bound of the underlying hash function. In this paper we show that there are genuine practical issues which render it almost impossible to get full security using this approach. We then observe that a recent online enciphering scheme called POEx by Forler et al. is actually an implicit example of this approach. We show a flaw in the analysis of POEx which results in a birthday bound attack and invalidates the beyond-the-birthday bound OSPRP security claim. We take a slightly different approach then the one just mentioned and propose XTC which achieves OSPRP security of O (max( n σ 2 − n , σ 2 2 −( n + t ) )) where t is the tweak size and n is the block size. While doing so we present an impossibility result for t &gt; n which can be of independent interest.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12095-017-0275-0</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-5957-2837</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-2447
ispartof Cryptography and communications, 2018-09, Vol.10 (5), p.731-753
issn 1936-2447
1936-2455
language eng
recordid cdi_proquest_journals_2043795509
source SpringerLink Journals - AutoHoldings
subjects Circuits
Coding and Information Theory
Communications Engineering
Computer Science
Data Structures and Information Theory
Encryption
Information and Communication
Mathematics of Computing
Networks
Security
Special Issue on Statistics in Design and Analysis of Symmetric Ciphers
title On rate-1 and beyond-the-birthday bound secure online ciphers using tweakable block ciphers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20rate-1%20and%20beyond-the-birthday%20bound%20secure%20online%20ciphers%20using%20tweakable%20block%20ciphers&rft.jtitle=Cryptography%20and%20communications&rft.au=Jha,%20Ashwin&rft.date=2018-09-01&rft.volume=10&rft.issue=5&rft.spage=731&rft.epage=753&rft.pages=731-753&rft.issn=1936-2447&rft.eissn=1936-2455&rft_id=info:doi/10.1007/s12095-017-0275-0&rft_dat=%3Cproquest_cross%3E2043795509%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2043795509&rft_id=info:pmid/&rfr_iscdi=true