Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations

Nocturnal dinitrogen pentoxide (N2O5) heterogeneous chemistry impacts regional air quality and the distribution and lifetime of tropospheric oxidants. Formed from the oxidation of nitrogen oxides, N2O5 is heterogeneously lost to aerosol with a highly variable reaction probability, γ(N2O5), dependent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2018-04, Vol.123 (8), p.4345-4372
Hauptverfasser: McDuffie, Erin E., Fibiger, Dorothy L., Dubé, William P., Lopez‐Hilfiker, Felipe, Lee, Ben H., Thornton, Joel A., Shah, Viral, Jaeglé, Lyatt, Guo, Hongyu, Weber, Rodney J., Michael Reeves, J., Weinheimer, Andrew J., Schroder, Jason C., Campuzano‐Jost, Pedro, Jimenez, Jose L., Dibb, Jack E., Veres, Patrick, Ebben, Carly, Sparks, Tamara L., Wooldridge, Paul J., Cohen, Ronald C., Hornbrook, Rebecca S., Apel, Eric C., Campos, Teresa, Hall, Samuel R., Ullmann, Kirk, Brown, Steven S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4372
container_issue 8
container_start_page 4345
container_title Journal of geophysical research. Atmospheres
container_volume 123
creator McDuffie, Erin E.
Fibiger, Dorothy L.
Dubé, William P.
Lopez‐Hilfiker, Felipe
Lee, Ben H.
Thornton, Joel A.
Shah, Viral
Jaeglé, Lyatt
Guo, Hongyu
Weber, Rodney J.
Michael Reeves, J.
Weinheimer, Andrew J.
Schroder, Jason C.
Campuzano‐Jost, Pedro
Jimenez, Jose L.
Dibb, Jack E.
Veres, Patrick
Ebben, Carly
Sparks, Tamara L.
Wooldridge, Paul J.
Cohen, Ronald C.
Hornbrook, Rebecca S.
Apel, Eric C.
Campos, Teresa
Hall, Samuel R.
Ullmann, Kirk
Brown, Steven S.
description Nocturnal dinitrogen pentoxide (N2O5) heterogeneous chemistry impacts regional air quality and the distribution and lifetime of tropospheric oxidants. Formed from the oxidation of nitrogen oxides, N2O5 is heterogeneously lost to aerosol with a highly variable reaction probability, γ(N2O5), dependent on aerosol composition and ambient conditions. Reaction products include soluble nitrate (HNO3 or NO3−) and nitryl chloride (ClNO2). We report the first‐ever derivations of γ(N2O5) from ambient wintertime aircraft measurements in the critically important nocturnal residual boundary layer. Box modeling of the 2015 Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign over the eastern United States derived 2,876 individual γ(N2O5) values with a median value of 0.0143 and range of 2 × 10−5 to 0.1751. WINTER γ(N2O5) values exhibited the strongest correlation with aerosol water content, but weak correlations with other variables, such as aerosol nitrate and organics, suggesting a complex, nonlinear dependence on multiple factors, or an additional dependence on a nonobserved factor. This factor may be related to aerosol phase, morphology (i.e., core shell), or mixing state, none of which are commonly measured during aircraft field studies. Despite general agreement with previous laboratory observations, comparison of WINTER data with 14 literature parameterizations (used to predict γ(N2O5) in chemical transport models) confirms that none of the current methods reproduce the full range of γ(N2O5) values. Nine reproduce the WINTER median within a factor of 2. Presented here is the first field‐based, empirical parameterization of γ(N2O5), fit to WINTER data, based on the functional form of previous parameterizations. Key Points Aircraft measurements over the eastern United States provide the largest number of N2O5 uptake coefficient γ(N2O5) determinations during winter Despite a large range and variability, several γ(N2O5) dependencies are statistically significant, particularly with aerosol liquid water Standard γ(N2O5) parameterizations do not capture the variability but several, including an empirical form derived here, capture the median
doi_str_mv 10.1002/2018JD028336
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2043767169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2043767169</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3310-ed9d52de13104889e66bb7561dc7dcc7a9f6eea7f866485ad2a78c7f71a4104c3</originalsourceid><addsrcrecordid>eNpNkNtOwkAQhhujiQS58wE28Rrd7XYP9Y4U5BAEQyB41wztFBehxW2rwdfwhV08xbmZmcw3_0x-z7tk9JpR6t_4lOlRl_qac3niNXwmw7YOQ3n6V6vHc69VlhvqQlMeiKDhfQywQlusMceiLsnEnwqy2FfwjKRbW5OvydLkjrglHWMTC1lF7hHK2uIO86r8haonJO4BQZbDybw3IxHs9mDWOYE8JZE1lUlgS3qvsK2hMkVOioxEtbVOgzyAhd3xC_P-NSsvvLMMtiW2fnLTW9z15tGgPZ72h1Fn3N5wzmgb0zAVforMNYHWIUq5WikhWZqoNEkUhJlEBJVpKQMtIPVB6URlikHgNhLe9K6-dfe2eKmxrOJNUdvcnYx9GnAllfPNUfybejNbPMR7a3ZgDzGj8dH2-L_t8ag_64pACMo_Adx9d3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2043767169</pqid></control><display><type>article</type><title>Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>McDuffie, Erin E. ; Fibiger, Dorothy L. ; Dubé, William P. ; Lopez‐Hilfiker, Felipe ; Lee, Ben H. ; Thornton, Joel A. ; Shah, Viral ; Jaeglé, Lyatt ; Guo, Hongyu ; Weber, Rodney J. ; Michael Reeves, J. ; Weinheimer, Andrew J. ; Schroder, Jason C. ; Campuzano‐Jost, Pedro ; Jimenez, Jose L. ; Dibb, Jack E. ; Veres, Patrick ; Ebben, Carly ; Sparks, Tamara L. ; Wooldridge, Paul J. ; Cohen, Ronald C. ; Hornbrook, Rebecca S. ; Apel, Eric C. ; Campos, Teresa ; Hall, Samuel R. ; Ullmann, Kirk ; Brown, Steven S.</creator><creatorcontrib>McDuffie, Erin E. ; Fibiger, Dorothy L. ; Dubé, William P. ; Lopez‐Hilfiker, Felipe ; Lee, Ben H. ; Thornton, Joel A. ; Shah, Viral ; Jaeglé, Lyatt ; Guo, Hongyu ; Weber, Rodney J. ; Michael Reeves, J. ; Weinheimer, Andrew J. ; Schroder, Jason C. ; Campuzano‐Jost, Pedro ; Jimenez, Jose L. ; Dibb, Jack E. ; Veres, Patrick ; Ebben, Carly ; Sparks, Tamara L. ; Wooldridge, Paul J. ; Cohen, Ronald C. ; Hornbrook, Rebecca S. ; Apel, Eric C. ; Campos, Teresa ; Hall, Samuel R. ; Ullmann, Kirk ; Brown, Steven S.</creatorcontrib><description>Nocturnal dinitrogen pentoxide (N2O5) heterogeneous chemistry impacts regional air quality and the distribution and lifetime of tropospheric oxidants. Formed from the oxidation of nitrogen oxides, N2O5 is heterogeneously lost to aerosol with a highly variable reaction probability, γ(N2O5), dependent on aerosol composition and ambient conditions. Reaction products include soluble nitrate (HNO3 or NO3−) and nitryl chloride (ClNO2). We report the first‐ever derivations of γ(N2O5) from ambient wintertime aircraft measurements in the critically important nocturnal residual boundary layer. Box modeling of the 2015 Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign over the eastern United States derived 2,876 individual γ(N2O5) values with a median value of 0.0143 and range of 2 × 10−5 to 0.1751. WINTER γ(N2O5) values exhibited the strongest correlation with aerosol water content, but weak correlations with other variables, such as aerosol nitrate and organics, suggesting a complex, nonlinear dependence on multiple factors, or an additional dependence on a nonobserved factor. This factor may be related to aerosol phase, morphology (i.e., core shell), or mixing state, none of which are commonly measured during aircraft field studies. Despite general agreement with previous laboratory observations, comparison of WINTER data with 14 literature parameterizations (used to predict γ(N2O5) in chemical transport models) confirms that none of the current methods reproduce the full range of γ(N2O5) values. Nine reproduce the WINTER median within a factor of 2. Presented here is the first field‐based, empirical parameterization of γ(N2O5), fit to WINTER data, based on the functional form of previous parameterizations. Key Points Aircraft measurements over the eastern United States provide the largest number of N2O5 uptake coefficient γ(N2O5) determinations during winter Despite a large range and variability, several γ(N2O5) dependencies are statistically significant, particularly with aerosol liquid water Standard γ(N2O5) parameterizations do not capture the variability but several, including an empirical form derived here, capture the median</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2018JD028336</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Aerosol composition ; Aerosol content ; Aerosols ; Air quality ; Air sampling ; Aircraft ; Atmospheric chemistry ; Boundary layers ; box model ; Chemical transport ; Correlation ; Dependence ; Evaluation ; Geophysics ; heterogeneous uptake ; Modelling ; Moisture content ; N2O5 ; Nitrogen oxides ; Nitryl chlorides ; Oxidants ; Oxidation ; Oxides ; Oxidizing agents ; Parameterization ; Photochemicals ; Probability theory ; Reaction products ; Transport ; Uptake ; uptake parameterizations ; Water content ; WINTER</subject><ispartof>Journal of geophysical research. Atmospheres, 2018-04, Vol.123 (8), p.4345-4372</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5547-106X ; 0000-0002-8525-0513 ; 0000-0003-0765-8035 ; 0000-0001-7477-9078 ; 0000-0003-3096-7709 ; 0000-0003-0487-3610 ; 0000-0001-6203-1847 ; 0000-0003-3930-010X ; 0000-0001-6617-7691 ; 0000-0002-6845-6077 ; 0000-0002-6304-6554 ; 0000-0001-6175-8286 ; 0000-0002-5098-4867 ; 0000-0002-5057-2168 ; 0000-0003-1866-801X ; 0000-0001-7539-353X ; 0000-0002-0537-471X ; 0000-0001-9421-818X ; 0000-0001-9749-151X ; 0000-0002-2060-7112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2018JD028336$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2018JD028336$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>McDuffie, Erin E.</creatorcontrib><creatorcontrib>Fibiger, Dorothy L.</creatorcontrib><creatorcontrib>Dubé, William P.</creatorcontrib><creatorcontrib>Lopez‐Hilfiker, Felipe</creatorcontrib><creatorcontrib>Lee, Ben H.</creatorcontrib><creatorcontrib>Thornton, Joel A.</creatorcontrib><creatorcontrib>Shah, Viral</creatorcontrib><creatorcontrib>Jaeglé, Lyatt</creatorcontrib><creatorcontrib>Guo, Hongyu</creatorcontrib><creatorcontrib>Weber, Rodney J.</creatorcontrib><creatorcontrib>Michael Reeves, J.</creatorcontrib><creatorcontrib>Weinheimer, Andrew J.</creatorcontrib><creatorcontrib>Schroder, Jason C.</creatorcontrib><creatorcontrib>Campuzano‐Jost, Pedro</creatorcontrib><creatorcontrib>Jimenez, Jose L.</creatorcontrib><creatorcontrib>Dibb, Jack E.</creatorcontrib><creatorcontrib>Veres, Patrick</creatorcontrib><creatorcontrib>Ebben, Carly</creatorcontrib><creatorcontrib>Sparks, Tamara L.</creatorcontrib><creatorcontrib>Wooldridge, Paul J.</creatorcontrib><creatorcontrib>Cohen, Ronald C.</creatorcontrib><creatorcontrib>Hornbrook, Rebecca S.</creatorcontrib><creatorcontrib>Apel, Eric C.</creatorcontrib><creatorcontrib>Campos, Teresa</creatorcontrib><creatorcontrib>Hall, Samuel R.</creatorcontrib><creatorcontrib>Ullmann, Kirk</creatorcontrib><creatorcontrib>Brown, Steven S.</creatorcontrib><title>Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations</title><title>Journal of geophysical research. Atmospheres</title><description>Nocturnal dinitrogen pentoxide (N2O5) heterogeneous chemistry impacts regional air quality and the distribution and lifetime of tropospheric oxidants. Formed from the oxidation of nitrogen oxides, N2O5 is heterogeneously lost to aerosol with a highly variable reaction probability, γ(N2O5), dependent on aerosol composition and ambient conditions. Reaction products include soluble nitrate (HNO3 or NO3−) and nitryl chloride (ClNO2). We report the first‐ever derivations of γ(N2O5) from ambient wintertime aircraft measurements in the critically important nocturnal residual boundary layer. Box modeling of the 2015 Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign over the eastern United States derived 2,876 individual γ(N2O5) values with a median value of 0.0143 and range of 2 × 10−5 to 0.1751. WINTER γ(N2O5) values exhibited the strongest correlation with aerosol water content, but weak correlations with other variables, such as aerosol nitrate and organics, suggesting a complex, nonlinear dependence on multiple factors, or an additional dependence on a nonobserved factor. This factor may be related to aerosol phase, morphology (i.e., core shell), or mixing state, none of which are commonly measured during aircraft field studies. Despite general agreement with previous laboratory observations, comparison of WINTER data with 14 literature parameterizations (used to predict γ(N2O5) in chemical transport models) confirms that none of the current methods reproduce the full range of γ(N2O5) values. Nine reproduce the WINTER median within a factor of 2. Presented here is the first field‐based, empirical parameterization of γ(N2O5), fit to WINTER data, based on the functional form of previous parameterizations. Key Points Aircraft measurements over the eastern United States provide the largest number of N2O5 uptake coefficient γ(N2O5) determinations during winter Despite a large range and variability, several γ(N2O5) dependencies are statistically significant, particularly with aerosol liquid water Standard γ(N2O5) parameterizations do not capture the variability but several, including an empirical form derived here, capture the median</description><subject>Aerosol composition</subject><subject>Aerosol content</subject><subject>Aerosols</subject><subject>Air quality</subject><subject>Air sampling</subject><subject>Aircraft</subject><subject>Atmospheric chemistry</subject><subject>Boundary layers</subject><subject>box model</subject><subject>Chemical transport</subject><subject>Correlation</subject><subject>Dependence</subject><subject>Evaluation</subject><subject>Geophysics</subject><subject>heterogeneous uptake</subject><subject>Modelling</subject><subject>Moisture content</subject><subject>N2O5</subject><subject>Nitrogen oxides</subject><subject>Nitryl chlorides</subject><subject>Oxidants</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Oxidizing agents</subject><subject>Parameterization</subject><subject>Photochemicals</subject><subject>Probability theory</subject><subject>Reaction products</subject><subject>Transport</subject><subject>Uptake</subject><subject>uptake parameterizations</subject><subject>Water content</subject><subject>WINTER</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkNtOwkAQhhujiQS58wE28Rrd7XYP9Y4U5BAEQyB41wztFBehxW2rwdfwhV08xbmZmcw3_0x-z7tk9JpR6t_4lOlRl_qac3niNXwmw7YOQ3n6V6vHc69VlhvqQlMeiKDhfQywQlusMceiLsnEnwqy2FfwjKRbW5OvydLkjrglHWMTC1lF7hHK2uIO86r8haonJO4BQZbDybw3IxHs9mDWOYE8JZE1lUlgS3qvsK2hMkVOioxEtbVOgzyAhd3xC_P-NSsvvLMMtiW2fnLTW9z15tGgPZ72h1Fn3N5wzmgb0zAVforMNYHWIUq5WikhWZqoNEkUhJlEBJVpKQMtIPVB6URlikHgNhLe9K6-dfe2eKmxrOJNUdvcnYx9GnAllfPNUfybejNbPMR7a3ZgDzGj8dH2-L_t8ag_64pACMo_Adx9d3Q</recordid><startdate>20180427</startdate><enddate>20180427</enddate><creator>McDuffie, Erin E.</creator><creator>Fibiger, Dorothy L.</creator><creator>Dubé, William P.</creator><creator>Lopez‐Hilfiker, Felipe</creator><creator>Lee, Ben H.</creator><creator>Thornton, Joel A.</creator><creator>Shah, Viral</creator><creator>Jaeglé, Lyatt</creator><creator>Guo, Hongyu</creator><creator>Weber, Rodney J.</creator><creator>Michael Reeves, J.</creator><creator>Weinheimer, Andrew J.</creator><creator>Schroder, Jason C.</creator><creator>Campuzano‐Jost, Pedro</creator><creator>Jimenez, Jose L.</creator><creator>Dibb, Jack E.</creator><creator>Veres, Patrick</creator><creator>Ebben, Carly</creator><creator>Sparks, Tamara L.</creator><creator>Wooldridge, Paul J.</creator><creator>Cohen, Ronald C.</creator><creator>Hornbrook, Rebecca S.</creator><creator>Apel, Eric C.</creator><creator>Campos, Teresa</creator><creator>Hall, Samuel R.</creator><creator>Ullmann, Kirk</creator><creator>Brown, Steven S.</creator><general>Blackwell Publishing Ltd</general><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5547-106X</orcidid><orcidid>https://orcid.org/0000-0002-8525-0513</orcidid><orcidid>https://orcid.org/0000-0003-0765-8035</orcidid><orcidid>https://orcid.org/0000-0001-7477-9078</orcidid><orcidid>https://orcid.org/0000-0003-3096-7709</orcidid><orcidid>https://orcid.org/0000-0003-0487-3610</orcidid><orcidid>https://orcid.org/0000-0001-6203-1847</orcidid><orcidid>https://orcid.org/0000-0003-3930-010X</orcidid><orcidid>https://orcid.org/0000-0001-6617-7691</orcidid><orcidid>https://orcid.org/0000-0002-6845-6077</orcidid><orcidid>https://orcid.org/0000-0002-6304-6554</orcidid><orcidid>https://orcid.org/0000-0001-6175-8286</orcidid><orcidid>https://orcid.org/0000-0002-5098-4867</orcidid><orcidid>https://orcid.org/0000-0002-5057-2168</orcidid><orcidid>https://orcid.org/0000-0003-1866-801X</orcidid><orcidid>https://orcid.org/0000-0001-7539-353X</orcidid><orcidid>https://orcid.org/0000-0002-0537-471X</orcidid><orcidid>https://orcid.org/0000-0001-9421-818X</orcidid><orcidid>https://orcid.org/0000-0001-9749-151X</orcidid><orcidid>https://orcid.org/0000-0002-2060-7112</orcidid></search><sort><creationdate>20180427</creationdate><title>Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations</title><author>McDuffie, Erin E. ; Fibiger, Dorothy L. ; Dubé, William P. ; Lopez‐Hilfiker, Felipe ; Lee, Ben H. ; Thornton, Joel A. ; Shah, Viral ; Jaeglé, Lyatt ; Guo, Hongyu ; Weber, Rodney J. ; Michael Reeves, J. ; Weinheimer, Andrew J. ; Schroder, Jason C. ; Campuzano‐Jost, Pedro ; Jimenez, Jose L. ; Dibb, Jack E. ; Veres, Patrick ; Ebben, Carly ; Sparks, Tamara L. ; Wooldridge, Paul J. ; Cohen, Ronald C. ; Hornbrook, Rebecca S. ; Apel, Eric C. ; Campos, Teresa ; Hall, Samuel R. ; Ullmann, Kirk ; Brown, Steven S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3310-ed9d52de13104889e66bb7561dc7dcc7a9f6eea7f866485ad2a78c7f71a4104c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerosol composition</topic><topic>Aerosol content</topic><topic>Aerosols</topic><topic>Air quality</topic><topic>Air sampling</topic><topic>Aircraft</topic><topic>Atmospheric chemistry</topic><topic>Boundary layers</topic><topic>box model</topic><topic>Chemical transport</topic><topic>Correlation</topic><topic>Dependence</topic><topic>Evaluation</topic><topic>Geophysics</topic><topic>heterogeneous uptake</topic><topic>Modelling</topic><topic>Moisture content</topic><topic>N2O5</topic><topic>Nitrogen oxides</topic><topic>Nitryl chlorides</topic><topic>Oxidants</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Oxidizing agents</topic><topic>Parameterization</topic><topic>Photochemicals</topic><topic>Probability theory</topic><topic>Reaction products</topic><topic>Transport</topic><topic>Uptake</topic><topic>uptake parameterizations</topic><topic>Water content</topic><topic>WINTER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDuffie, Erin E.</creatorcontrib><creatorcontrib>Fibiger, Dorothy L.</creatorcontrib><creatorcontrib>Dubé, William P.</creatorcontrib><creatorcontrib>Lopez‐Hilfiker, Felipe</creatorcontrib><creatorcontrib>Lee, Ben H.</creatorcontrib><creatorcontrib>Thornton, Joel A.</creatorcontrib><creatorcontrib>Shah, Viral</creatorcontrib><creatorcontrib>Jaeglé, Lyatt</creatorcontrib><creatorcontrib>Guo, Hongyu</creatorcontrib><creatorcontrib>Weber, Rodney J.</creatorcontrib><creatorcontrib>Michael Reeves, J.</creatorcontrib><creatorcontrib>Weinheimer, Andrew J.</creatorcontrib><creatorcontrib>Schroder, Jason C.</creatorcontrib><creatorcontrib>Campuzano‐Jost, Pedro</creatorcontrib><creatorcontrib>Jimenez, Jose L.</creatorcontrib><creatorcontrib>Dibb, Jack E.</creatorcontrib><creatorcontrib>Veres, Patrick</creatorcontrib><creatorcontrib>Ebben, Carly</creatorcontrib><creatorcontrib>Sparks, Tamara L.</creatorcontrib><creatorcontrib>Wooldridge, Paul J.</creatorcontrib><creatorcontrib>Cohen, Ronald C.</creatorcontrib><creatorcontrib>Hornbrook, Rebecca S.</creatorcontrib><creatorcontrib>Apel, Eric C.</creatorcontrib><creatorcontrib>Campos, Teresa</creatorcontrib><creatorcontrib>Hall, Samuel R.</creatorcontrib><creatorcontrib>Ullmann, Kirk</creatorcontrib><creatorcontrib>Brown, Steven S.</creatorcontrib><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDuffie, Erin E.</au><au>Fibiger, Dorothy L.</au><au>Dubé, William P.</au><au>Lopez‐Hilfiker, Felipe</au><au>Lee, Ben H.</au><au>Thornton, Joel A.</au><au>Shah, Viral</au><au>Jaeglé, Lyatt</au><au>Guo, Hongyu</au><au>Weber, Rodney J.</au><au>Michael Reeves, J.</au><au>Weinheimer, Andrew J.</au><au>Schroder, Jason C.</au><au>Campuzano‐Jost, Pedro</au><au>Jimenez, Jose L.</au><au>Dibb, Jack E.</au><au>Veres, Patrick</au><au>Ebben, Carly</au><au>Sparks, Tamara L.</au><au>Wooldridge, Paul J.</au><au>Cohen, Ronald C.</au><au>Hornbrook, Rebecca S.</au><au>Apel, Eric C.</au><au>Campos, Teresa</au><au>Hall, Samuel R.</au><au>Ullmann, Kirk</au><au>Brown, Steven S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2018-04-27</date><risdate>2018</risdate><volume>123</volume><issue>8</issue><spage>4345</spage><epage>4372</epage><pages>4345-4372</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Nocturnal dinitrogen pentoxide (N2O5) heterogeneous chemistry impacts regional air quality and the distribution and lifetime of tropospheric oxidants. Formed from the oxidation of nitrogen oxides, N2O5 is heterogeneously lost to aerosol with a highly variable reaction probability, γ(N2O5), dependent on aerosol composition and ambient conditions. Reaction products include soluble nitrate (HNO3 or NO3−) and nitryl chloride (ClNO2). We report the first‐ever derivations of γ(N2O5) from ambient wintertime aircraft measurements in the critically important nocturnal residual boundary layer. Box modeling of the 2015 Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign over the eastern United States derived 2,876 individual γ(N2O5) values with a median value of 0.0143 and range of 2 × 10−5 to 0.1751. WINTER γ(N2O5) values exhibited the strongest correlation with aerosol water content, but weak correlations with other variables, such as aerosol nitrate and organics, suggesting a complex, nonlinear dependence on multiple factors, or an additional dependence on a nonobserved factor. This factor may be related to aerosol phase, morphology (i.e., core shell), or mixing state, none of which are commonly measured during aircraft field studies. Despite general agreement with previous laboratory observations, comparison of WINTER data with 14 literature parameterizations (used to predict γ(N2O5) in chemical transport models) confirms that none of the current methods reproduce the full range of γ(N2O5) values. Nine reproduce the WINTER median within a factor of 2. Presented here is the first field‐based, empirical parameterization of γ(N2O5), fit to WINTER data, based on the functional form of previous parameterizations. Key Points Aircraft measurements over the eastern United States provide the largest number of N2O5 uptake coefficient γ(N2O5) determinations during winter Despite a large range and variability, several γ(N2O5) dependencies are statistically significant, particularly with aerosol liquid water Standard γ(N2O5) parameterizations do not capture the variability but several, including an empirical form derived here, capture the median</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2018JD028336</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-5547-106X</orcidid><orcidid>https://orcid.org/0000-0002-8525-0513</orcidid><orcidid>https://orcid.org/0000-0003-0765-8035</orcidid><orcidid>https://orcid.org/0000-0001-7477-9078</orcidid><orcidid>https://orcid.org/0000-0003-3096-7709</orcidid><orcidid>https://orcid.org/0000-0003-0487-3610</orcidid><orcidid>https://orcid.org/0000-0001-6203-1847</orcidid><orcidid>https://orcid.org/0000-0003-3930-010X</orcidid><orcidid>https://orcid.org/0000-0001-6617-7691</orcidid><orcidid>https://orcid.org/0000-0002-6845-6077</orcidid><orcidid>https://orcid.org/0000-0002-6304-6554</orcidid><orcidid>https://orcid.org/0000-0001-6175-8286</orcidid><orcidid>https://orcid.org/0000-0002-5098-4867</orcidid><orcidid>https://orcid.org/0000-0002-5057-2168</orcidid><orcidid>https://orcid.org/0000-0003-1866-801X</orcidid><orcidid>https://orcid.org/0000-0001-7539-353X</orcidid><orcidid>https://orcid.org/0000-0002-0537-471X</orcidid><orcidid>https://orcid.org/0000-0001-9421-818X</orcidid><orcidid>https://orcid.org/0000-0001-9749-151X</orcidid><orcidid>https://orcid.org/0000-0002-2060-7112</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2018-04, Vol.123 (8), p.4345-4372
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_journals_2043767169
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Aerosol composition
Aerosol content
Aerosols
Air quality
Air sampling
Aircraft
Atmospheric chemistry
Boundary layers
box model
Chemical transport
Correlation
Dependence
Evaluation
Geophysics
heterogeneous uptake
Modelling
Moisture content
N2O5
Nitrogen oxides
Nitryl chlorides
Oxidants
Oxidation
Oxides
Oxidizing agents
Parameterization
Photochemicals
Probability theory
Reaction products
Transport
Uptake
uptake parameterizations
Water content
WINTER
title Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20N2O5%20Uptake%20During%20Winter:%20Aircraft%20Measurements%20During%20the%202015%20WINTER%20Campaign%20and%20Critical%20Evaluation%20of%20Current%20Parameterizations&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=McDuffie,%20Erin%20E.&rft.date=2018-04-27&rft.volume=123&rft.issue=8&rft.spage=4345&rft.epage=4372&rft.pages=4345-4372&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2018JD028336&rft_dat=%3Cproquest_wiley%3E2043767169%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2043767169&rft_id=info:pmid/&rfr_iscdi=true