Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations
Nocturnal dinitrogen pentoxide (N2O5) heterogeneous chemistry impacts regional air quality and the distribution and lifetime of tropospheric oxidants. Formed from the oxidation of nitrogen oxides, N2O5 is heterogeneously lost to aerosol with a highly variable reaction probability, γ(N2O5), dependent...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2018-04, Vol.123 (8), p.4345-4372 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4372 |
---|---|
container_issue | 8 |
container_start_page | 4345 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 123 |
creator | McDuffie, Erin E. Fibiger, Dorothy L. Dubé, William P. Lopez‐Hilfiker, Felipe Lee, Ben H. Thornton, Joel A. Shah, Viral Jaeglé, Lyatt Guo, Hongyu Weber, Rodney J. Michael Reeves, J. Weinheimer, Andrew J. Schroder, Jason C. Campuzano‐Jost, Pedro Jimenez, Jose L. Dibb, Jack E. Veres, Patrick Ebben, Carly Sparks, Tamara L. Wooldridge, Paul J. Cohen, Ronald C. Hornbrook, Rebecca S. Apel, Eric C. Campos, Teresa Hall, Samuel R. Ullmann, Kirk Brown, Steven S. |
description | Nocturnal dinitrogen pentoxide (N2O5) heterogeneous chemistry impacts regional air quality and the distribution and lifetime of tropospheric oxidants. Formed from the oxidation of nitrogen oxides, N2O5 is heterogeneously lost to aerosol with a highly variable reaction probability, γ(N2O5), dependent on aerosol composition and ambient conditions. Reaction products include soluble nitrate (HNO3 or NO3−) and nitryl chloride (ClNO2). We report the first‐ever derivations of γ(N2O5) from ambient wintertime aircraft measurements in the critically important nocturnal residual boundary layer. Box modeling of the 2015 Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign over the eastern United States derived 2,876 individual γ(N2O5) values with a median value of 0.0143 and range of 2 × 10−5 to 0.1751. WINTER γ(N2O5) values exhibited the strongest correlation with aerosol water content, but weak correlations with other variables, such as aerosol nitrate and organics, suggesting a complex, nonlinear dependence on multiple factors, or an additional dependence on a nonobserved factor. This factor may be related to aerosol phase, morphology (i.e., core shell), or mixing state, none of which are commonly measured during aircraft field studies. Despite general agreement with previous laboratory observations, comparison of WINTER data with 14 literature parameterizations (used to predict γ(N2O5) in chemical transport models) confirms that none of the current methods reproduce the full range of γ(N2O5) values. Nine reproduce the WINTER median within a factor of 2. Presented here is the first field‐based, empirical parameterization of γ(N2O5), fit to WINTER data, based on the functional form of previous parameterizations.
Key Points
Aircraft measurements over the eastern United States provide the largest number of N2O5 uptake coefficient γ(N2O5) determinations during winter
Despite a large range and variability, several γ(N2O5) dependencies are statistically significant, particularly with aerosol liquid water
Standard γ(N2O5) parameterizations do not capture the variability but several, including an empirical form derived here, capture the median |
doi_str_mv | 10.1002/2018JD028336 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2043767169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2043767169</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3310-ed9d52de13104889e66bb7561dc7dcc7a9f6eea7f866485ad2a78c7f71a4104c3</originalsourceid><addsrcrecordid>eNpNkNtOwkAQhhujiQS58wE28Rrd7XYP9Y4U5BAEQyB41wztFBehxW2rwdfwhV08xbmZmcw3_0x-z7tk9JpR6t_4lOlRl_qac3niNXwmw7YOQ3n6V6vHc69VlhvqQlMeiKDhfQywQlusMceiLsnEnwqy2FfwjKRbW5OvydLkjrglHWMTC1lF7hHK2uIO86r8haonJO4BQZbDybw3IxHs9mDWOYE8JZE1lUlgS3qvsK2hMkVOioxEtbVOgzyAhd3xC_P-NSsvvLMMtiW2fnLTW9z15tGgPZ72h1Fn3N5wzmgb0zAVforMNYHWIUq5WikhWZqoNEkUhJlEBJVpKQMtIPVB6URlikHgNhLe9K6-dfe2eKmxrOJNUdvcnYx9GnAllfPNUfybejNbPMR7a3ZgDzGj8dH2-L_t8ag_64pACMo_Adx9d3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2043767169</pqid></control><display><type>article</type><title>Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>McDuffie, Erin E. ; Fibiger, Dorothy L. ; Dubé, William P. ; Lopez‐Hilfiker, Felipe ; Lee, Ben H. ; Thornton, Joel A. ; Shah, Viral ; Jaeglé, Lyatt ; Guo, Hongyu ; Weber, Rodney J. ; Michael Reeves, J. ; Weinheimer, Andrew J. ; Schroder, Jason C. ; Campuzano‐Jost, Pedro ; Jimenez, Jose L. ; Dibb, Jack E. ; Veres, Patrick ; Ebben, Carly ; Sparks, Tamara L. ; Wooldridge, Paul J. ; Cohen, Ronald C. ; Hornbrook, Rebecca S. ; Apel, Eric C. ; Campos, Teresa ; Hall, Samuel R. ; Ullmann, Kirk ; Brown, Steven S.</creator><creatorcontrib>McDuffie, Erin E. ; Fibiger, Dorothy L. ; Dubé, William P. ; Lopez‐Hilfiker, Felipe ; Lee, Ben H. ; Thornton, Joel A. ; Shah, Viral ; Jaeglé, Lyatt ; Guo, Hongyu ; Weber, Rodney J. ; Michael Reeves, J. ; Weinheimer, Andrew J. ; Schroder, Jason C. ; Campuzano‐Jost, Pedro ; Jimenez, Jose L. ; Dibb, Jack E. ; Veres, Patrick ; Ebben, Carly ; Sparks, Tamara L. ; Wooldridge, Paul J. ; Cohen, Ronald C. ; Hornbrook, Rebecca S. ; Apel, Eric C. ; Campos, Teresa ; Hall, Samuel R. ; Ullmann, Kirk ; Brown, Steven S.</creatorcontrib><description>Nocturnal dinitrogen pentoxide (N2O5) heterogeneous chemistry impacts regional air quality and the distribution and lifetime of tropospheric oxidants. Formed from the oxidation of nitrogen oxides, N2O5 is heterogeneously lost to aerosol with a highly variable reaction probability, γ(N2O5), dependent on aerosol composition and ambient conditions. Reaction products include soluble nitrate (HNO3 or NO3−) and nitryl chloride (ClNO2). We report the first‐ever derivations of γ(N2O5) from ambient wintertime aircraft measurements in the critically important nocturnal residual boundary layer. Box modeling of the 2015 Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign over the eastern United States derived 2,876 individual γ(N2O5) values with a median value of 0.0143 and range of 2 × 10−5 to 0.1751. WINTER γ(N2O5) values exhibited the strongest correlation with aerosol water content, but weak correlations with other variables, such as aerosol nitrate and organics, suggesting a complex, nonlinear dependence on multiple factors, or an additional dependence on a nonobserved factor. This factor may be related to aerosol phase, morphology (i.e., core shell), or mixing state, none of which are commonly measured during aircraft field studies. Despite general agreement with previous laboratory observations, comparison of WINTER data with 14 literature parameterizations (used to predict γ(N2O5) in chemical transport models) confirms that none of the current methods reproduce the full range of γ(N2O5) values. Nine reproduce the WINTER median within a factor of 2. Presented here is the first field‐based, empirical parameterization of γ(N2O5), fit to WINTER data, based on the functional form of previous parameterizations.
Key Points
Aircraft measurements over the eastern United States provide the largest number of N2O5 uptake coefficient γ(N2O5) determinations during winter
Despite a large range and variability, several γ(N2O5) dependencies are statistically significant, particularly with aerosol liquid water
Standard γ(N2O5) parameterizations do not capture the variability but several, including an empirical form derived here, capture the median</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2018JD028336</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Aerosol composition ; Aerosol content ; Aerosols ; Air quality ; Air sampling ; Aircraft ; Atmospheric chemistry ; Boundary layers ; box model ; Chemical transport ; Correlation ; Dependence ; Evaluation ; Geophysics ; heterogeneous uptake ; Modelling ; Moisture content ; N2O5 ; Nitrogen oxides ; Nitryl chlorides ; Oxidants ; Oxidation ; Oxides ; Oxidizing agents ; Parameterization ; Photochemicals ; Probability theory ; Reaction products ; Transport ; Uptake ; uptake parameterizations ; Water content ; WINTER</subject><ispartof>Journal of geophysical research. Atmospheres, 2018-04, Vol.123 (8), p.4345-4372</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5547-106X ; 0000-0002-8525-0513 ; 0000-0003-0765-8035 ; 0000-0001-7477-9078 ; 0000-0003-3096-7709 ; 0000-0003-0487-3610 ; 0000-0001-6203-1847 ; 0000-0003-3930-010X ; 0000-0001-6617-7691 ; 0000-0002-6845-6077 ; 0000-0002-6304-6554 ; 0000-0001-6175-8286 ; 0000-0002-5098-4867 ; 0000-0002-5057-2168 ; 0000-0003-1866-801X ; 0000-0001-7539-353X ; 0000-0002-0537-471X ; 0000-0001-9421-818X ; 0000-0001-9749-151X ; 0000-0002-2060-7112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2018JD028336$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2018JD028336$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>McDuffie, Erin E.</creatorcontrib><creatorcontrib>Fibiger, Dorothy L.</creatorcontrib><creatorcontrib>Dubé, William P.</creatorcontrib><creatorcontrib>Lopez‐Hilfiker, Felipe</creatorcontrib><creatorcontrib>Lee, Ben H.</creatorcontrib><creatorcontrib>Thornton, Joel A.</creatorcontrib><creatorcontrib>Shah, Viral</creatorcontrib><creatorcontrib>Jaeglé, Lyatt</creatorcontrib><creatorcontrib>Guo, Hongyu</creatorcontrib><creatorcontrib>Weber, Rodney J.</creatorcontrib><creatorcontrib>Michael Reeves, J.</creatorcontrib><creatorcontrib>Weinheimer, Andrew J.</creatorcontrib><creatorcontrib>Schroder, Jason C.</creatorcontrib><creatorcontrib>Campuzano‐Jost, Pedro</creatorcontrib><creatorcontrib>Jimenez, Jose L.</creatorcontrib><creatorcontrib>Dibb, Jack E.</creatorcontrib><creatorcontrib>Veres, Patrick</creatorcontrib><creatorcontrib>Ebben, Carly</creatorcontrib><creatorcontrib>Sparks, Tamara L.</creatorcontrib><creatorcontrib>Wooldridge, Paul J.</creatorcontrib><creatorcontrib>Cohen, Ronald C.</creatorcontrib><creatorcontrib>Hornbrook, Rebecca S.</creatorcontrib><creatorcontrib>Apel, Eric C.</creatorcontrib><creatorcontrib>Campos, Teresa</creatorcontrib><creatorcontrib>Hall, Samuel R.</creatorcontrib><creatorcontrib>Ullmann, Kirk</creatorcontrib><creatorcontrib>Brown, Steven S.</creatorcontrib><title>Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations</title><title>Journal of geophysical research. Atmospheres</title><description>Nocturnal dinitrogen pentoxide (N2O5) heterogeneous chemistry impacts regional air quality and the distribution and lifetime of tropospheric oxidants. Formed from the oxidation of nitrogen oxides, N2O5 is heterogeneously lost to aerosol with a highly variable reaction probability, γ(N2O5), dependent on aerosol composition and ambient conditions. Reaction products include soluble nitrate (HNO3 or NO3−) and nitryl chloride (ClNO2). We report the first‐ever derivations of γ(N2O5) from ambient wintertime aircraft measurements in the critically important nocturnal residual boundary layer. Box modeling of the 2015 Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign over the eastern United States derived 2,876 individual γ(N2O5) values with a median value of 0.0143 and range of 2 × 10−5 to 0.1751. WINTER γ(N2O5) values exhibited the strongest correlation with aerosol water content, but weak correlations with other variables, such as aerosol nitrate and organics, suggesting a complex, nonlinear dependence on multiple factors, or an additional dependence on a nonobserved factor. This factor may be related to aerosol phase, morphology (i.e., core shell), or mixing state, none of which are commonly measured during aircraft field studies. Despite general agreement with previous laboratory observations, comparison of WINTER data with 14 literature parameterizations (used to predict γ(N2O5) in chemical transport models) confirms that none of the current methods reproduce the full range of γ(N2O5) values. Nine reproduce the WINTER median within a factor of 2. Presented here is the first field‐based, empirical parameterization of γ(N2O5), fit to WINTER data, based on the functional form of previous parameterizations.
Key Points
Aircraft measurements over the eastern United States provide the largest number of N2O5 uptake coefficient γ(N2O5) determinations during winter
Despite a large range and variability, several γ(N2O5) dependencies are statistically significant, particularly with aerosol liquid water
Standard γ(N2O5) parameterizations do not capture the variability but several, including an empirical form derived here, capture the median</description><subject>Aerosol composition</subject><subject>Aerosol content</subject><subject>Aerosols</subject><subject>Air quality</subject><subject>Air sampling</subject><subject>Aircraft</subject><subject>Atmospheric chemistry</subject><subject>Boundary layers</subject><subject>box model</subject><subject>Chemical transport</subject><subject>Correlation</subject><subject>Dependence</subject><subject>Evaluation</subject><subject>Geophysics</subject><subject>heterogeneous uptake</subject><subject>Modelling</subject><subject>Moisture content</subject><subject>N2O5</subject><subject>Nitrogen oxides</subject><subject>Nitryl chlorides</subject><subject>Oxidants</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Oxidizing agents</subject><subject>Parameterization</subject><subject>Photochemicals</subject><subject>Probability theory</subject><subject>Reaction products</subject><subject>Transport</subject><subject>Uptake</subject><subject>uptake parameterizations</subject><subject>Water content</subject><subject>WINTER</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkNtOwkAQhhujiQS58wE28Rrd7XYP9Y4U5BAEQyB41wztFBehxW2rwdfwhV08xbmZmcw3_0x-z7tk9JpR6t_4lOlRl_qac3niNXwmw7YOQ3n6V6vHc69VlhvqQlMeiKDhfQywQlusMceiLsnEnwqy2FfwjKRbW5OvydLkjrglHWMTC1lF7hHK2uIO86r8haonJO4BQZbDybw3IxHs9mDWOYE8JZE1lUlgS3qvsK2hMkVOioxEtbVOgzyAhd3xC_P-NSsvvLMMtiW2fnLTW9z15tGgPZ72h1Fn3N5wzmgb0zAVforMNYHWIUq5WikhWZqoNEkUhJlEBJVpKQMtIPVB6URlikHgNhLe9K6-dfe2eKmxrOJNUdvcnYx9GnAllfPNUfybejNbPMR7a3ZgDzGj8dH2-L_t8ag_64pACMo_Adx9d3Q</recordid><startdate>20180427</startdate><enddate>20180427</enddate><creator>McDuffie, Erin E.</creator><creator>Fibiger, Dorothy L.</creator><creator>Dubé, William P.</creator><creator>Lopez‐Hilfiker, Felipe</creator><creator>Lee, Ben H.</creator><creator>Thornton, Joel A.</creator><creator>Shah, Viral</creator><creator>Jaeglé, Lyatt</creator><creator>Guo, Hongyu</creator><creator>Weber, Rodney J.</creator><creator>Michael Reeves, J.</creator><creator>Weinheimer, Andrew J.</creator><creator>Schroder, Jason C.</creator><creator>Campuzano‐Jost, Pedro</creator><creator>Jimenez, Jose L.</creator><creator>Dibb, Jack E.</creator><creator>Veres, Patrick</creator><creator>Ebben, Carly</creator><creator>Sparks, Tamara L.</creator><creator>Wooldridge, Paul J.</creator><creator>Cohen, Ronald C.</creator><creator>Hornbrook, Rebecca S.</creator><creator>Apel, Eric C.</creator><creator>Campos, Teresa</creator><creator>Hall, Samuel R.</creator><creator>Ullmann, Kirk</creator><creator>Brown, Steven S.</creator><general>Blackwell Publishing Ltd</general><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5547-106X</orcidid><orcidid>https://orcid.org/0000-0002-8525-0513</orcidid><orcidid>https://orcid.org/0000-0003-0765-8035</orcidid><orcidid>https://orcid.org/0000-0001-7477-9078</orcidid><orcidid>https://orcid.org/0000-0003-3096-7709</orcidid><orcidid>https://orcid.org/0000-0003-0487-3610</orcidid><orcidid>https://orcid.org/0000-0001-6203-1847</orcidid><orcidid>https://orcid.org/0000-0003-3930-010X</orcidid><orcidid>https://orcid.org/0000-0001-6617-7691</orcidid><orcidid>https://orcid.org/0000-0002-6845-6077</orcidid><orcidid>https://orcid.org/0000-0002-6304-6554</orcidid><orcidid>https://orcid.org/0000-0001-6175-8286</orcidid><orcidid>https://orcid.org/0000-0002-5098-4867</orcidid><orcidid>https://orcid.org/0000-0002-5057-2168</orcidid><orcidid>https://orcid.org/0000-0003-1866-801X</orcidid><orcidid>https://orcid.org/0000-0001-7539-353X</orcidid><orcidid>https://orcid.org/0000-0002-0537-471X</orcidid><orcidid>https://orcid.org/0000-0001-9421-818X</orcidid><orcidid>https://orcid.org/0000-0001-9749-151X</orcidid><orcidid>https://orcid.org/0000-0002-2060-7112</orcidid></search><sort><creationdate>20180427</creationdate><title>Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations</title><author>McDuffie, Erin E. ; Fibiger, Dorothy L. ; Dubé, William P. ; Lopez‐Hilfiker, Felipe ; Lee, Ben H. ; Thornton, Joel A. ; Shah, Viral ; Jaeglé, Lyatt ; Guo, Hongyu ; Weber, Rodney J. ; Michael Reeves, J. ; Weinheimer, Andrew J. ; Schroder, Jason C. ; Campuzano‐Jost, Pedro ; Jimenez, Jose L. ; Dibb, Jack E. ; Veres, Patrick ; Ebben, Carly ; Sparks, Tamara L. ; Wooldridge, Paul J. ; Cohen, Ronald C. ; Hornbrook, Rebecca S. ; Apel, Eric C. ; Campos, Teresa ; Hall, Samuel R. ; Ullmann, Kirk ; Brown, Steven S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3310-ed9d52de13104889e66bb7561dc7dcc7a9f6eea7f866485ad2a78c7f71a4104c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerosol composition</topic><topic>Aerosol content</topic><topic>Aerosols</topic><topic>Air quality</topic><topic>Air sampling</topic><topic>Aircraft</topic><topic>Atmospheric chemistry</topic><topic>Boundary layers</topic><topic>box model</topic><topic>Chemical transport</topic><topic>Correlation</topic><topic>Dependence</topic><topic>Evaluation</topic><topic>Geophysics</topic><topic>heterogeneous uptake</topic><topic>Modelling</topic><topic>Moisture content</topic><topic>N2O5</topic><topic>Nitrogen oxides</topic><topic>Nitryl chlorides</topic><topic>Oxidants</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Oxidizing agents</topic><topic>Parameterization</topic><topic>Photochemicals</topic><topic>Probability theory</topic><topic>Reaction products</topic><topic>Transport</topic><topic>Uptake</topic><topic>uptake parameterizations</topic><topic>Water content</topic><topic>WINTER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDuffie, Erin E.</creatorcontrib><creatorcontrib>Fibiger, Dorothy L.</creatorcontrib><creatorcontrib>Dubé, William P.</creatorcontrib><creatorcontrib>Lopez‐Hilfiker, Felipe</creatorcontrib><creatorcontrib>Lee, Ben H.</creatorcontrib><creatorcontrib>Thornton, Joel A.</creatorcontrib><creatorcontrib>Shah, Viral</creatorcontrib><creatorcontrib>Jaeglé, Lyatt</creatorcontrib><creatorcontrib>Guo, Hongyu</creatorcontrib><creatorcontrib>Weber, Rodney J.</creatorcontrib><creatorcontrib>Michael Reeves, J.</creatorcontrib><creatorcontrib>Weinheimer, Andrew J.</creatorcontrib><creatorcontrib>Schroder, Jason C.</creatorcontrib><creatorcontrib>Campuzano‐Jost, Pedro</creatorcontrib><creatorcontrib>Jimenez, Jose L.</creatorcontrib><creatorcontrib>Dibb, Jack E.</creatorcontrib><creatorcontrib>Veres, Patrick</creatorcontrib><creatorcontrib>Ebben, Carly</creatorcontrib><creatorcontrib>Sparks, Tamara L.</creatorcontrib><creatorcontrib>Wooldridge, Paul J.</creatorcontrib><creatorcontrib>Cohen, Ronald C.</creatorcontrib><creatorcontrib>Hornbrook, Rebecca S.</creatorcontrib><creatorcontrib>Apel, Eric C.</creatorcontrib><creatorcontrib>Campos, Teresa</creatorcontrib><creatorcontrib>Hall, Samuel R.</creatorcontrib><creatorcontrib>Ullmann, Kirk</creatorcontrib><creatorcontrib>Brown, Steven S.</creatorcontrib><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDuffie, Erin E.</au><au>Fibiger, Dorothy L.</au><au>Dubé, William P.</au><au>Lopez‐Hilfiker, Felipe</au><au>Lee, Ben H.</au><au>Thornton, Joel A.</au><au>Shah, Viral</au><au>Jaeglé, Lyatt</au><au>Guo, Hongyu</au><au>Weber, Rodney J.</au><au>Michael Reeves, J.</au><au>Weinheimer, Andrew J.</au><au>Schroder, Jason C.</au><au>Campuzano‐Jost, Pedro</au><au>Jimenez, Jose L.</au><au>Dibb, Jack E.</au><au>Veres, Patrick</au><au>Ebben, Carly</au><au>Sparks, Tamara L.</au><au>Wooldridge, Paul J.</au><au>Cohen, Ronald C.</au><au>Hornbrook, Rebecca S.</au><au>Apel, Eric C.</au><au>Campos, Teresa</au><au>Hall, Samuel R.</au><au>Ullmann, Kirk</au><au>Brown, Steven S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2018-04-27</date><risdate>2018</risdate><volume>123</volume><issue>8</issue><spage>4345</spage><epage>4372</epage><pages>4345-4372</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Nocturnal dinitrogen pentoxide (N2O5) heterogeneous chemistry impacts regional air quality and the distribution and lifetime of tropospheric oxidants. Formed from the oxidation of nitrogen oxides, N2O5 is heterogeneously lost to aerosol with a highly variable reaction probability, γ(N2O5), dependent on aerosol composition and ambient conditions. Reaction products include soluble nitrate (HNO3 or NO3−) and nitryl chloride (ClNO2). We report the first‐ever derivations of γ(N2O5) from ambient wintertime aircraft measurements in the critically important nocturnal residual boundary layer. Box modeling of the 2015 Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign over the eastern United States derived 2,876 individual γ(N2O5) values with a median value of 0.0143 and range of 2 × 10−5 to 0.1751. WINTER γ(N2O5) values exhibited the strongest correlation with aerosol water content, but weak correlations with other variables, such as aerosol nitrate and organics, suggesting a complex, nonlinear dependence on multiple factors, or an additional dependence on a nonobserved factor. This factor may be related to aerosol phase, morphology (i.e., core shell), or mixing state, none of which are commonly measured during aircraft field studies. Despite general agreement with previous laboratory observations, comparison of WINTER data with 14 literature parameterizations (used to predict γ(N2O5) in chemical transport models) confirms that none of the current methods reproduce the full range of γ(N2O5) values. Nine reproduce the WINTER median within a factor of 2. Presented here is the first field‐based, empirical parameterization of γ(N2O5), fit to WINTER data, based on the functional form of previous parameterizations.
Key Points
Aircraft measurements over the eastern United States provide the largest number of N2O5 uptake coefficient γ(N2O5) determinations during winter
Despite a large range and variability, several γ(N2O5) dependencies are statistically significant, particularly with aerosol liquid water
Standard γ(N2O5) parameterizations do not capture the variability but several, including an empirical form derived here, capture the median</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2018JD028336</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-5547-106X</orcidid><orcidid>https://orcid.org/0000-0002-8525-0513</orcidid><orcidid>https://orcid.org/0000-0003-0765-8035</orcidid><orcidid>https://orcid.org/0000-0001-7477-9078</orcidid><orcidid>https://orcid.org/0000-0003-3096-7709</orcidid><orcidid>https://orcid.org/0000-0003-0487-3610</orcidid><orcidid>https://orcid.org/0000-0001-6203-1847</orcidid><orcidid>https://orcid.org/0000-0003-3930-010X</orcidid><orcidid>https://orcid.org/0000-0001-6617-7691</orcidid><orcidid>https://orcid.org/0000-0002-6845-6077</orcidid><orcidid>https://orcid.org/0000-0002-6304-6554</orcidid><orcidid>https://orcid.org/0000-0001-6175-8286</orcidid><orcidid>https://orcid.org/0000-0002-5098-4867</orcidid><orcidid>https://orcid.org/0000-0002-5057-2168</orcidid><orcidid>https://orcid.org/0000-0003-1866-801X</orcidid><orcidid>https://orcid.org/0000-0001-7539-353X</orcidid><orcidid>https://orcid.org/0000-0002-0537-471X</orcidid><orcidid>https://orcid.org/0000-0001-9421-818X</orcidid><orcidid>https://orcid.org/0000-0001-9749-151X</orcidid><orcidid>https://orcid.org/0000-0002-2060-7112</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2018-04, Vol.123 (8), p.4345-4372 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_proquest_journals_2043767169 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Aerosol composition Aerosol content Aerosols Air quality Air sampling Aircraft Atmospheric chemistry Boundary layers box model Chemical transport Correlation Dependence Evaluation Geophysics heterogeneous uptake Modelling Moisture content N2O5 Nitrogen oxides Nitryl chlorides Oxidants Oxidation Oxides Oxidizing agents Parameterization Photochemicals Probability theory Reaction products Transport Uptake uptake parameterizations Water content WINTER |
title | Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20N2O5%20Uptake%20During%20Winter:%20Aircraft%20Measurements%20During%20the%202015%20WINTER%20Campaign%20and%20Critical%20Evaluation%20of%20Current%20Parameterizations&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=McDuffie,%20Erin%20E.&rft.date=2018-04-27&rft.volume=123&rft.issue=8&rft.spage=4345&rft.epage=4372&rft.pages=4345-4372&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2018JD028336&rft_dat=%3Cproquest_wiley%3E2043767169%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2043767169&rft_id=info:pmid/&rfr_iscdi=true |