Hot carrier transfer processes in nonstoichiometric titanium hydride

The absorber of the hot carrier solar cell (HCSC) needs to have a considerably reduced hot carrier thermalisation rate, in order to maintain the photo-generated hot carriers for enough time such that they can be extracted. The slow carrier cooling effect is predicted in materials in which the phonon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2017-08, Vol.56 (8S2), p.8
Hauptverfasser: Wang, Pei, Iles, Gail N., Mole, Richard A., Yu, Dehong, Wen, Xiaoming, Aguey-Zinsou, Kondo-Francois, Shrestha, Santosh, Conibeer, Gavin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8S2
container_start_page 8
container_title Japanese Journal of Applied Physics
container_volume 56
creator Wang, Pei
Iles, Gail N.
Mole, Richard A.
Yu, Dehong
Wen, Xiaoming
Aguey-Zinsou, Kondo-Francois
Shrestha, Santosh
Conibeer, Gavin
description The absorber of the hot carrier solar cell (HCSC) needs to have a considerably reduced hot carrier thermalisation rate, in order to maintain the photo-generated hot carriers for enough time such that they can be extracted. The slow carrier cooling effect is predicted in materials in which the phononic band gap is sufficiently large to block the Klemens decay. Binary compounds with a large mass ratio between the constituent elements are likely to have large phononic band gap. Titanium hydride is one of these binary compounds that has the potential to become an absorber of the HCSC. Whilst a large phononic gap has been observed in stoichiometric TiH2, it has not been experimentally confirmed for hydrogen deficient TiHx (where x < 2). In this article, we report the phonon density of states of TiH1.65 measured using inelastic neutron scattering and presented to clearly show the phononic band gap. We also present the carrier thermalisation process of a TiHx (1< x
doi_str_mv 10.7567/JJAP.56.08MA10
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2043747500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2043747500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-86ca696136b089674ea615c48fb4f255bc8b36fcee64740c3a8addf050fcb74a3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKtXzwvehF0nm6_tsdSPWioK6jlkswnNYjdrkh7637tlC556mhn4vTePh9AthkIwLh5Wq_lHwXgB1dscwxmaYEJFToGzczQBKHFOZ2V5ia5ibIeTM4on6HHpU6ZVCM6ELAXVRTssffDaxGhi5rqs811M3umN81uTgtNZckl1brfNNvsmuMZcowurfqK5Oc4p-n5--los8_X7y-tivs41BZLyimvFZxwTXkM144IaxTHTtLI1tSVjta5qwq02hlNBQRNVqaaxwMDqWlBFpuhu9B3y_e5MTLL1u9ANL2UJlAgqGMBAFSOlg48xGCv74LYq7CUGeWhKHpqSjMuxqUFwPwqc7_8d21b1B6j6LI-g7Bt7Aj7h_Afi2HgS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2043747500</pqid></control><display><type>article</type><title>Hot carrier transfer processes in nonstoichiometric titanium hydride</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Wang, Pei ; Iles, Gail N. ; Mole, Richard A. ; Yu, Dehong ; Wen, Xiaoming ; Aguey-Zinsou, Kondo-Francois ; Shrestha, Santosh ; Conibeer, Gavin</creator><creatorcontrib>Wang, Pei ; Iles, Gail N. ; Mole, Richard A. ; Yu, Dehong ; Wen, Xiaoming ; Aguey-Zinsou, Kondo-Francois ; Shrestha, Santosh ; Conibeer, Gavin</creatorcontrib><description>The absorber of the hot carrier solar cell (HCSC) needs to have a considerably reduced hot carrier thermalisation rate, in order to maintain the photo-generated hot carriers for enough time such that they can be extracted. The slow carrier cooling effect is predicted in materials in which the phononic band gap is sufficiently large to block the Klemens decay. Binary compounds with a large mass ratio between the constituent elements are likely to have large phononic band gap. Titanium hydride is one of these binary compounds that has the potential to become an absorber of the HCSC. Whilst a large phononic gap has been observed in stoichiometric TiH2, it has not been experimentally confirmed for hydrogen deficient TiHx (where x &lt; 2). In this article, we report the phonon density of states of TiH1.65 measured using inelastic neutron scattering and presented to clearly show the phononic band gap. We also present the carrier thermalisation process of a TiHx (1&lt; x &lt;2) thin film by transient absorption, and estimate the carrier cooling time in this material.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.7567/JJAP.56.08MA10</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: The Japan Society of Applied Physics</publisher><subject>Absorbers ; Band gap ; Cooling effects ; Inelastic scattering ; Metal hydrides ; Neutron scattering ; Titanium compounds</subject><ispartof>Japanese Journal of Applied Physics, 2017-08, Vol.56 (8S2), p.8</ispartof><rights>2017 The Japan Society of Applied Physics</rights><rights>Copyright Japanese Journal of Applied Physics Aug 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-86ca696136b089674ea615c48fb4f255bc8b36fcee64740c3a8addf050fcb74a3</citedby><cites>FETCH-LOGICAL-c403t-86ca696136b089674ea615c48fb4f255bc8b36fcee64740c3a8addf050fcb74a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.7567/JJAP.56.08MA10/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Iles, Gail N.</creatorcontrib><creatorcontrib>Mole, Richard A.</creatorcontrib><creatorcontrib>Yu, Dehong</creatorcontrib><creatorcontrib>Wen, Xiaoming</creatorcontrib><creatorcontrib>Aguey-Zinsou, Kondo-Francois</creatorcontrib><creatorcontrib>Shrestha, Santosh</creatorcontrib><creatorcontrib>Conibeer, Gavin</creatorcontrib><title>Hot carrier transfer processes in nonstoichiometric titanium hydride</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>The absorber of the hot carrier solar cell (HCSC) needs to have a considerably reduced hot carrier thermalisation rate, in order to maintain the photo-generated hot carriers for enough time such that they can be extracted. The slow carrier cooling effect is predicted in materials in which the phononic band gap is sufficiently large to block the Klemens decay. Binary compounds with a large mass ratio between the constituent elements are likely to have large phononic band gap. Titanium hydride is one of these binary compounds that has the potential to become an absorber of the HCSC. Whilst a large phononic gap has been observed in stoichiometric TiH2, it has not been experimentally confirmed for hydrogen deficient TiHx (where x &lt; 2). In this article, we report the phonon density of states of TiH1.65 measured using inelastic neutron scattering and presented to clearly show the phononic band gap. We also present the carrier thermalisation process of a TiHx (1&lt; x &lt;2) thin film by transient absorption, and estimate the carrier cooling time in this material.</description><subject>Absorbers</subject><subject>Band gap</subject><subject>Cooling effects</subject><subject>Inelastic scattering</subject><subject>Metal hydrides</subject><subject>Neutron scattering</subject><subject>Titanium compounds</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKtXzwvehF0nm6_tsdSPWioK6jlkswnNYjdrkh7637tlC556mhn4vTePh9AthkIwLh5Wq_lHwXgB1dscwxmaYEJFToGzczQBKHFOZ2V5ia5ibIeTM4on6HHpU6ZVCM6ELAXVRTssffDaxGhi5rqs811M3umN81uTgtNZckl1brfNNvsmuMZcowurfqK5Oc4p-n5--los8_X7y-tivs41BZLyimvFZxwTXkM144IaxTHTtLI1tSVjta5qwq02hlNBQRNVqaaxwMDqWlBFpuhu9B3y_e5MTLL1u9ANL2UJlAgqGMBAFSOlg48xGCv74LYq7CUGeWhKHpqSjMuxqUFwPwqc7_8d21b1B6j6LI-g7Bt7Aj7h_Afi2HgS</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Wang, Pei</creator><creator>Iles, Gail N.</creator><creator>Mole, Richard A.</creator><creator>Yu, Dehong</creator><creator>Wen, Xiaoming</creator><creator>Aguey-Zinsou, Kondo-Francois</creator><creator>Shrestha, Santosh</creator><creator>Conibeer, Gavin</creator><general>The Japan Society of Applied Physics</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170801</creationdate><title>Hot carrier transfer processes in nonstoichiometric titanium hydride</title><author>Wang, Pei ; Iles, Gail N. ; Mole, Richard A. ; Yu, Dehong ; Wen, Xiaoming ; Aguey-Zinsou, Kondo-Francois ; Shrestha, Santosh ; Conibeer, Gavin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-86ca696136b089674ea615c48fb4f255bc8b36fcee64740c3a8addf050fcb74a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorbers</topic><topic>Band gap</topic><topic>Cooling effects</topic><topic>Inelastic scattering</topic><topic>Metal hydrides</topic><topic>Neutron scattering</topic><topic>Titanium compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Iles, Gail N.</creatorcontrib><creatorcontrib>Mole, Richard A.</creatorcontrib><creatorcontrib>Yu, Dehong</creatorcontrib><creatorcontrib>Wen, Xiaoming</creatorcontrib><creatorcontrib>Aguey-Zinsou, Kondo-Francois</creatorcontrib><creatorcontrib>Shrestha, Santosh</creatorcontrib><creatorcontrib>Conibeer, Gavin</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Pei</au><au>Iles, Gail N.</au><au>Mole, Richard A.</au><au>Yu, Dehong</au><au>Wen, Xiaoming</au><au>Aguey-Zinsou, Kondo-Francois</au><au>Shrestha, Santosh</au><au>Conibeer, Gavin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hot carrier transfer processes in nonstoichiometric titanium hydride</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>56</volume><issue>8S2</issue><spage>8</spage><pages>8-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>The absorber of the hot carrier solar cell (HCSC) needs to have a considerably reduced hot carrier thermalisation rate, in order to maintain the photo-generated hot carriers for enough time such that they can be extracted. The slow carrier cooling effect is predicted in materials in which the phononic band gap is sufficiently large to block the Klemens decay. Binary compounds with a large mass ratio between the constituent elements are likely to have large phononic band gap. Titanium hydride is one of these binary compounds that has the potential to become an absorber of the HCSC. Whilst a large phononic gap has been observed in stoichiometric TiH2, it has not been experimentally confirmed for hydrogen deficient TiHx (where x &lt; 2). In this article, we report the phonon density of states of TiH1.65 measured using inelastic neutron scattering and presented to clearly show the phononic band gap. We also present the carrier thermalisation process of a TiHx (1&lt; x &lt;2) thin film by transient absorption, and estimate the carrier cooling time in this material.</abstract><cop>Tokyo</cop><pub>The Japan Society of Applied Physics</pub><doi>10.7567/JJAP.56.08MA10</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2017-08, Vol.56 (8S2), p.8
issn 0021-4922
1347-4065
language eng
recordid cdi_proquest_journals_2043747500
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Absorbers
Band gap
Cooling effects
Inelastic scattering
Metal hydrides
Neutron scattering
Titanium compounds
title Hot carrier transfer processes in nonstoichiometric titanium hydride
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hot%20carrier%20transfer%20processes%20in%20nonstoichiometric%20titanium%20hydride&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Wang,%20Pei&rft.date=2017-08-01&rft.volume=56&rft.issue=8S2&rft.spage=8&rft.pages=8-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.7567/JJAP.56.08MA10&rft_dat=%3Cproquest_cross%3E2043747500%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2043747500&rft_id=info:pmid/&rfr_iscdi=true