Microstructure Noise, Realized Variance, and Optimal Sampling
A recent and extensive literature has pioneered the summing of squared observed intra-daily returns, "realized variance", to estimate the daily integrated variance of financial asset prices, a traditional object of economic interest. We show that, in the presence of market microstructure n...
Gespeichert in:
Veröffentlicht in: | The Review of economic studies 2008-04, Vol.75 (2), p.339-369 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 369 |
---|---|
container_issue | 2 |
container_start_page | 339 |
container_title | The Review of economic studies |
container_volume | 75 |
creator | BANDI, F.M RUSSELL, J.R |
description | A recent and extensive literature has pioneered the summing of squared observed intra-daily returns, "realized variance", to estimate the daily integrated variance of financial asset prices, a traditional object of economic interest. We show that, in the presence of market microstructure noise, realized variance does not identify the daily integrated variance of the frictionless equilibrium price. However, we demonstrate that the noise-induced bias at very high sampling frequencies can be appropriately traded off with the variance reduction obtained by high-frequency sampling and derive a mean-squared-error (MSE) optimal sampling theory for the purpose of integrated variance estimation. We show how our theory naturally leads to an identification procedure, which allows us to recover the moments of the unobserved noise; this procedure may be useful in other applications. Finally, using the profits obtained by option traders on the basis of alternative variance forecasts as our economic metric, we find that explicit optimization of realized variance's finite sample MSE properties results in accurate forecasts and considerable economic gains. |
doi_str_mv | 10.1111/j.1467-937X.2008.00474.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_204351829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20185035</jstor_id><sourcerecordid>20185035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-c0e1ba97a43737e1c47f40b732f559d6d52a43628305fcee268d1ad69016df643</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRsFZ_ghh8NnH2njz4IEWtUhW8lOLLsE02klibuptC9de7MdJ5WZhzzszOR0hEIaGhzuuECqXjjOtZwgDSBEBokWx2yGAr7JIBABexkkzvkwPvawCgaaoH5OK-yl3jW7fO27Wz0UNTeXsWPVmzqH5sEU2Nq8wyDy2zLKLHVVt9mkX0bD5Xi2r5fkj2SrPw9uj_HZLX66uX0TiePN7cji4ncS44a-McLJ2bTBvBNdeW5kKXAuaas1LKrFCFZEFSLOUgy9xaptKCmkJlQFVRKsGH5LSfu3LN19r6Futm7ZZhJTIQXNKUZcGU9qbuIO9siSsXfuu-kQJ2rLDGDgl2SLBjhX-scBOix3209m3jtjkWIEngMuhxr1e-tZutbtwHqnCRxPHsDad3Uz66VxPkwX_S-0vToHl3lcfX5zCNh6UqBcb5Lx7gfl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204351829</pqid></control><display><type>article</type><title>Microstructure Noise, Realized Variance, and Optimal Sampling</title><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>BANDI, F.M ; RUSSELL, J.R</creator><creatorcontrib>BANDI, F.M ; RUSSELL, J.R</creatorcontrib><description>A recent and extensive literature has pioneered the summing of squared observed intra-daily returns, "realized variance", to estimate the daily integrated variance of financial asset prices, a traditional object of economic interest. We show that, in the presence of market microstructure noise, realized variance does not identify the daily integrated variance of the frictionless equilibrium price. However, we demonstrate that the noise-induced bias at very high sampling frequencies can be appropriately traded off with the variance reduction obtained by high-frequency sampling and derive a mean-squared-error (MSE) optimal sampling theory for the purpose of integrated variance estimation. We show how our theory naturally leads to an identification procedure, which allows us to recover the moments of the unobserved noise; this procedure may be useful in other applications. Finally, using the profits obtained by option traders on the basis of alternative variance forecasts as our economic metric, we find that explicit optimization of realized variance's finite sample MSE properties results in accurate forecasts and considerable economic gains.</description><identifier>ISSN: 0034-6527</identifier><identifier>EISSN: 1467-937X</identifier><identifier>DOI: 10.1111/j.1467-937X.2008.00474.x</identifier><language>eng</language><publisher>Oxford: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Analytical forecasting ; Approximation ; Consistent estimators ; Economic theory ; Equilibrium prices ; Estimation bias ; Estimators ; G12 ; G13 ; High frequencies ; Information retrieval noise ; Mean square errors ; Noise ; Prices ; Sampling techniques ; Statistical variance ; Studies ; Variances</subject><ispartof>The Review of economic studies, 2008-04, Vol.75 (2), p.339-369</ispartof><rights>Copyright 2008 The Review of Economic Studies Limited</rights><rights>Copyright Blackwell Publishing Ltd. Apr 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-c0e1ba97a43737e1c47f40b732f559d6d52a43628305fcee268d1ad69016df643</citedby><cites>FETCH-LOGICAL-c432t-c0e1ba97a43737e1c47f40b732f559d6d52a43628305fcee268d1ad69016df643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20185035$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20185035$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>BANDI, F.M</creatorcontrib><creatorcontrib>RUSSELL, J.R</creatorcontrib><title>Microstructure Noise, Realized Variance, and Optimal Sampling</title><title>The Review of economic studies</title><addtitle>The Review of Economic Studies</addtitle><description>A recent and extensive literature has pioneered the summing of squared observed intra-daily returns, "realized variance", to estimate the daily integrated variance of financial asset prices, a traditional object of economic interest. We show that, in the presence of market microstructure noise, realized variance does not identify the daily integrated variance of the frictionless equilibrium price. However, we demonstrate that the noise-induced bias at very high sampling frequencies can be appropriately traded off with the variance reduction obtained by high-frequency sampling and derive a mean-squared-error (MSE) optimal sampling theory for the purpose of integrated variance estimation. We show how our theory naturally leads to an identification procedure, which allows us to recover the moments of the unobserved noise; this procedure may be useful in other applications. Finally, using the profits obtained by option traders on the basis of alternative variance forecasts as our economic metric, we find that explicit optimization of realized variance's finite sample MSE properties results in accurate forecasts and considerable economic gains.</description><subject>Analytical forecasting</subject><subject>Approximation</subject><subject>Consistent estimators</subject><subject>Economic theory</subject><subject>Equilibrium prices</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>G12</subject><subject>G13</subject><subject>High frequencies</subject><subject>Information retrieval noise</subject><subject>Mean square errors</subject><subject>Noise</subject><subject>Prices</subject><subject>Sampling techniques</subject><subject>Statistical variance</subject><subject>Studies</subject><subject>Variances</subject><issn>0034-6527</issn><issn>1467-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLw0AQhRdRsFZ_ghh8NnH2njz4IEWtUhW8lOLLsE02klibuptC9de7MdJ5WZhzzszOR0hEIaGhzuuECqXjjOtZwgDSBEBokWx2yGAr7JIBABexkkzvkwPvawCgaaoH5OK-yl3jW7fO27Wz0UNTeXsWPVmzqH5sEU2Nq8wyDy2zLKLHVVt9mkX0bD5Xi2r5fkj2SrPw9uj_HZLX66uX0TiePN7cji4ncS44a-McLJ2bTBvBNdeW5kKXAuaas1LKrFCFZEFSLOUgy9xaptKCmkJlQFVRKsGH5LSfu3LN19r6Futm7ZZhJTIQXNKUZcGU9qbuIO9siSsXfuu-kQJ2rLDGDgl2SLBjhX-scBOix3209m3jtjkWIEngMuhxr1e-tZutbtwHqnCRxPHsDad3Uz66VxPkwX_S-0vToHl3lcfX5zCNh6UqBcb5Lx7gfl4</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>BANDI, F.M</creator><creator>RUSSELL, J.R</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Review of Economic Studies Ltd., Blackwell Publishing</general><general>Oxford University Press</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20080401</creationdate><title>Microstructure Noise, Realized Variance, and Optimal Sampling</title><author>BANDI, F.M ; RUSSELL, J.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-c0e1ba97a43737e1c47f40b732f559d6d52a43628305fcee268d1ad69016df643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical forecasting</topic><topic>Approximation</topic><topic>Consistent estimators</topic><topic>Economic theory</topic><topic>Equilibrium prices</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>G12</topic><topic>G13</topic><topic>High frequencies</topic><topic>Information retrieval noise</topic><topic>Mean square errors</topic><topic>Noise</topic><topic>Prices</topic><topic>Sampling techniques</topic><topic>Statistical variance</topic><topic>Studies</topic><topic>Variances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BANDI, F.M</creatorcontrib><creatorcontrib>RUSSELL, J.R</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The Review of economic studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BANDI, F.M</au><au>RUSSELL, J.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure Noise, Realized Variance, and Optimal Sampling</atitle><jtitle>The Review of economic studies</jtitle><addtitle>The Review of Economic Studies</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>75</volume><issue>2</issue><spage>339</spage><epage>369</epage><pages>339-369</pages><issn>0034-6527</issn><eissn>1467-937X</eissn><abstract>A recent and extensive literature has pioneered the summing of squared observed intra-daily returns, "realized variance", to estimate the daily integrated variance of financial asset prices, a traditional object of economic interest. We show that, in the presence of market microstructure noise, realized variance does not identify the daily integrated variance of the frictionless equilibrium price. However, we demonstrate that the noise-induced bias at very high sampling frequencies can be appropriately traded off with the variance reduction obtained by high-frequency sampling and derive a mean-squared-error (MSE) optimal sampling theory for the purpose of integrated variance estimation. We show how our theory naturally leads to an identification procedure, which allows us to recover the moments of the unobserved noise; this procedure may be useful in other applications. Finally, using the profits obtained by option traders on the basis of alternative variance forecasts as our economic metric, we find that explicit optimization of realized variance's finite sample MSE properties results in accurate forecasts and considerable economic gains.</abstract><cop>Oxford</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-937X.2008.00474.x</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6527 |
ispartof | The Review of economic studies, 2008-04, Vol.75 (2), p.339-369 |
issn | 0034-6527 1467-937X |
language | eng |
recordid | cdi_proquest_journals_204351829 |
source | EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current) |
subjects | Analytical forecasting Approximation Consistent estimators Economic theory Equilibrium prices Estimation bias Estimators G12 G13 High frequencies Information retrieval noise Mean square errors Noise Prices Sampling techniques Statistical variance Studies Variances |
title | Microstructure Noise, Realized Variance, and Optimal Sampling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20Noise,%20Realized%20Variance,%20and%20Optimal%20Sampling&rft.jtitle=The%20Review%20of%20economic%20studies&rft.au=BANDI,%20F.M&rft.date=2008-04-01&rft.volume=75&rft.issue=2&rft.spage=339&rft.epage=369&rft.pages=339-369&rft.issn=0034-6527&rft.eissn=1467-937X&rft_id=info:doi/10.1111/j.1467-937X.2008.00474.x&rft_dat=%3Cjstor_proqu%3E20185035%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204351829&rft_id=info:pmid/&rft_jstor_id=20185035&rfr_iscdi=true |