Microstructure Noise, Realized Variance, and Optimal Sampling

A recent and extensive literature has pioneered the summing of squared observed intra-daily returns, "realized variance", to estimate the daily integrated variance of financial asset prices, a traditional object of economic interest. We show that, in the presence of market microstructure n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Review of economic studies 2008-04, Vol.75 (2), p.339-369
Hauptverfasser: BANDI, F.M, RUSSELL, J.R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 369
container_issue 2
container_start_page 339
container_title The Review of economic studies
container_volume 75
creator BANDI, F.M
RUSSELL, J.R
description A recent and extensive literature has pioneered the summing of squared observed intra-daily returns, "realized variance", to estimate the daily integrated variance of financial asset prices, a traditional object of economic interest. We show that, in the presence of market microstructure noise, realized variance does not identify the daily integrated variance of the frictionless equilibrium price. However, we demonstrate that the noise-induced bias at very high sampling frequencies can be appropriately traded off with the variance reduction obtained by high-frequency sampling and derive a mean-squared-error (MSE) optimal sampling theory for the purpose of integrated variance estimation. We show how our theory naturally leads to an identification procedure, which allows us to recover the moments of the unobserved noise; this procedure may be useful in other applications. Finally, using the profits obtained by option traders on the basis of alternative variance forecasts as our economic metric, we find that explicit optimization of realized variance's finite sample MSE properties results in accurate forecasts and considerable economic gains.
doi_str_mv 10.1111/j.1467-937X.2008.00474.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_204351829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20185035</jstor_id><sourcerecordid>20185035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-c0e1ba97a43737e1c47f40b732f559d6d52a43628305fcee268d1ad69016df643</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRsFZ_ghh8NnH2njz4IEWtUhW8lOLLsE02klibuptC9de7MdJ5WZhzzszOR0hEIaGhzuuECqXjjOtZwgDSBEBokWx2yGAr7JIBABexkkzvkwPvawCgaaoH5OK-yl3jW7fO27Wz0UNTeXsWPVmzqH5sEU2Nq8wyDy2zLKLHVVt9mkX0bD5Xi2r5fkj2SrPw9uj_HZLX66uX0TiePN7cji4ncS44a-McLJ2bTBvBNdeW5kKXAuaas1LKrFCFZEFSLOUgy9xaptKCmkJlQFVRKsGH5LSfu3LN19r6Futm7ZZhJTIQXNKUZcGU9qbuIO9siSsXfuu-kQJ2rLDGDgl2SLBjhX-scBOix3209m3jtjkWIEngMuhxr1e-tZutbtwHqnCRxPHsDad3Uz66VxPkwX_S-0vToHl3lcfX5zCNh6UqBcb5Lx7gfl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204351829</pqid></control><display><type>article</type><title>Microstructure Noise, Realized Variance, and Optimal Sampling</title><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>BANDI, F.M ; RUSSELL, J.R</creator><creatorcontrib>BANDI, F.M ; RUSSELL, J.R</creatorcontrib><description>A recent and extensive literature has pioneered the summing of squared observed intra-daily returns, "realized variance", to estimate the daily integrated variance of financial asset prices, a traditional object of economic interest. We show that, in the presence of market microstructure noise, realized variance does not identify the daily integrated variance of the frictionless equilibrium price. However, we demonstrate that the noise-induced bias at very high sampling frequencies can be appropriately traded off with the variance reduction obtained by high-frequency sampling and derive a mean-squared-error (MSE) optimal sampling theory for the purpose of integrated variance estimation. We show how our theory naturally leads to an identification procedure, which allows us to recover the moments of the unobserved noise; this procedure may be useful in other applications. Finally, using the profits obtained by option traders on the basis of alternative variance forecasts as our economic metric, we find that explicit optimization of realized variance's finite sample MSE properties results in accurate forecasts and considerable economic gains.</description><identifier>ISSN: 0034-6527</identifier><identifier>EISSN: 1467-937X</identifier><identifier>DOI: 10.1111/j.1467-937X.2008.00474.x</identifier><language>eng</language><publisher>Oxford: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Analytical forecasting ; Approximation ; Consistent estimators ; Economic theory ; Equilibrium prices ; Estimation bias ; Estimators ; G12 ; G13 ; High frequencies ; Information retrieval noise ; Mean square errors ; Noise ; Prices ; Sampling techniques ; Statistical variance ; Studies ; Variances</subject><ispartof>The Review of economic studies, 2008-04, Vol.75 (2), p.339-369</ispartof><rights>Copyright 2008 The Review of Economic Studies Limited</rights><rights>Copyright Blackwell Publishing Ltd. Apr 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-c0e1ba97a43737e1c47f40b732f559d6d52a43628305fcee268d1ad69016df643</citedby><cites>FETCH-LOGICAL-c432t-c0e1ba97a43737e1c47f40b732f559d6d52a43628305fcee268d1ad69016df643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20185035$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20185035$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>BANDI, F.M</creatorcontrib><creatorcontrib>RUSSELL, J.R</creatorcontrib><title>Microstructure Noise, Realized Variance, and Optimal Sampling</title><title>The Review of economic studies</title><addtitle>The Review of Economic Studies</addtitle><description>A recent and extensive literature has pioneered the summing of squared observed intra-daily returns, "realized variance", to estimate the daily integrated variance of financial asset prices, a traditional object of economic interest. We show that, in the presence of market microstructure noise, realized variance does not identify the daily integrated variance of the frictionless equilibrium price. However, we demonstrate that the noise-induced bias at very high sampling frequencies can be appropriately traded off with the variance reduction obtained by high-frequency sampling and derive a mean-squared-error (MSE) optimal sampling theory for the purpose of integrated variance estimation. We show how our theory naturally leads to an identification procedure, which allows us to recover the moments of the unobserved noise; this procedure may be useful in other applications. Finally, using the profits obtained by option traders on the basis of alternative variance forecasts as our economic metric, we find that explicit optimization of realized variance's finite sample MSE properties results in accurate forecasts and considerable economic gains.</description><subject>Analytical forecasting</subject><subject>Approximation</subject><subject>Consistent estimators</subject><subject>Economic theory</subject><subject>Equilibrium prices</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>G12</subject><subject>G13</subject><subject>High frequencies</subject><subject>Information retrieval noise</subject><subject>Mean square errors</subject><subject>Noise</subject><subject>Prices</subject><subject>Sampling techniques</subject><subject>Statistical variance</subject><subject>Studies</subject><subject>Variances</subject><issn>0034-6527</issn><issn>1467-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLw0AQhRdRsFZ_ghh8NnH2njz4IEWtUhW8lOLLsE02klibuptC9de7MdJ5WZhzzszOR0hEIaGhzuuECqXjjOtZwgDSBEBokWx2yGAr7JIBABexkkzvkwPvawCgaaoH5OK-yl3jW7fO27Wz0UNTeXsWPVmzqH5sEU2Nq8wyDy2zLKLHVVt9mkX0bD5Xi2r5fkj2SrPw9uj_HZLX66uX0TiePN7cji4ncS44a-McLJ2bTBvBNdeW5kKXAuaas1LKrFCFZEFSLOUgy9xaptKCmkJlQFVRKsGH5LSfu3LN19r6Futm7ZZhJTIQXNKUZcGU9qbuIO9siSsXfuu-kQJ2rLDGDgl2SLBjhX-scBOix3209m3jtjkWIEngMuhxr1e-tZutbtwHqnCRxPHsDad3Uz66VxPkwX_S-0vToHl3lcfX5zCNh6UqBcb5Lx7gfl4</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>BANDI, F.M</creator><creator>RUSSELL, J.R</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Review of Economic Studies Ltd., Blackwell Publishing</general><general>Oxford University Press</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20080401</creationdate><title>Microstructure Noise, Realized Variance, and Optimal Sampling</title><author>BANDI, F.M ; RUSSELL, J.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-c0e1ba97a43737e1c47f40b732f559d6d52a43628305fcee268d1ad69016df643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical forecasting</topic><topic>Approximation</topic><topic>Consistent estimators</topic><topic>Economic theory</topic><topic>Equilibrium prices</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>G12</topic><topic>G13</topic><topic>High frequencies</topic><topic>Information retrieval noise</topic><topic>Mean square errors</topic><topic>Noise</topic><topic>Prices</topic><topic>Sampling techniques</topic><topic>Statistical variance</topic><topic>Studies</topic><topic>Variances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BANDI, F.M</creatorcontrib><creatorcontrib>RUSSELL, J.R</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The Review of economic studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BANDI, F.M</au><au>RUSSELL, J.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure Noise, Realized Variance, and Optimal Sampling</atitle><jtitle>The Review of economic studies</jtitle><addtitle>The Review of Economic Studies</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>75</volume><issue>2</issue><spage>339</spage><epage>369</epage><pages>339-369</pages><issn>0034-6527</issn><eissn>1467-937X</eissn><abstract>A recent and extensive literature has pioneered the summing of squared observed intra-daily returns, "realized variance", to estimate the daily integrated variance of financial asset prices, a traditional object of economic interest. We show that, in the presence of market microstructure noise, realized variance does not identify the daily integrated variance of the frictionless equilibrium price. However, we demonstrate that the noise-induced bias at very high sampling frequencies can be appropriately traded off with the variance reduction obtained by high-frequency sampling and derive a mean-squared-error (MSE) optimal sampling theory for the purpose of integrated variance estimation. We show how our theory naturally leads to an identification procedure, which allows us to recover the moments of the unobserved noise; this procedure may be useful in other applications. Finally, using the profits obtained by option traders on the basis of alternative variance forecasts as our economic metric, we find that explicit optimization of realized variance's finite sample MSE properties results in accurate forecasts and considerable economic gains.</abstract><cop>Oxford</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-937X.2008.00474.x</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-6527
ispartof The Review of economic studies, 2008-04, Vol.75 (2), p.339-369
issn 0034-6527
1467-937X
language eng
recordid cdi_proquest_journals_204351829
source EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Analytical forecasting
Approximation
Consistent estimators
Economic theory
Equilibrium prices
Estimation bias
Estimators
G12
G13
High frequencies
Information retrieval noise
Mean square errors
Noise
Prices
Sampling techniques
Statistical variance
Studies
Variances
title Microstructure Noise, Realized Variance, and Optimal Sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20Noise,%20Realized%20Variance,%20and%20Optimal%20Sampling&rft.jtitle=The%20Review%20of%20economic%20studies&rft.au=BANDI,%20F.M&rft.date=2008-04-01&rft.volume=75&rft.issue=2&rft.spage=339&rft.epage=369&rft.pages=339-369&rft.issn=0034-6527&rft.eissn=1467-937X&rft_id=info:doi/10.1111/j.1467-937X.2008.00474.x&rft_dat=%3Cjstor_proqu%3E20185035%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204351829&rft_id=info:pmid/&rft_jstor_id=20185035&rfr_iscdi=true