Improved validation framework and R-package for artificial neural network models
Validation is a critical component of any modelling process. In artificial neural network (ANN) modelling, validation generally consists of the assessment of model predictive performance on an independent validation set (predictive validity). However, this ignores other aspects of model validation c...
Gespeichert in:
Veröffentlicht in: | Environmental modelling & software : with environment data news 2017-06, Vol.92, p.82-106 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106 |
---|---|
container_issue | |
container_start_page | 82 |
container_title | Environmental modelling & software : with environment data news |
container_volume | 92 |
creator | Humphrey, Greer B. Maier, Holger R. Wu, Wenyan Mount, Nick J. Dandy, Graeme C. Abrahart, Robert J. Dawson, Christian W. |
description | Validation is a critical component of any modelling process. In artificial neural network (ANN) modelling, validation generally consists of the assessment of model predictive performance on an independent validation set (predictive validity). However, this ignores other aspects of model validation considered to be good practice in other areas of environmental modelling, such as residual analysis (replicative validity) and checking the plausibility of the model in relation to a priori system understanding (structural validity). In order to address this shortcoming, a validation framework for ANNs is introduced in this paper that covers all of the above aspects of validation. In addition, the validann R-package is introduced that enables these validation methods to be implemented in a user-friendly and consistent fashion. The benefits of the framework and R-package are demonstrated for two environmental modelling case studies, highlighting the importance of considering replicative and structural validity in addition to predictive validity.
•A comprehensive validation framework for ANNs is proposed.•The ‘validann’ R-package for implementing the validation framework is introduced.•Application of the framework and R-package is demonstrated on two real case studies.•Results reveal that predictively valid ANN models may not be credible.•Adoption of the framework leads to improvements in overall ANN validity. |
doi_str_mv | 10.1016/j.envsoft.2017.01.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2043336713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S136481521630963X</els_id><sourcerecordid>2043336713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-45a40ef18fbec9e13b17cae9ecc26ff3745cc0ababed602c450b6d3f46090e773</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhCMEEqXwE5AicU5YP-K0J4QqHpUqgRCcLcdZI6dJXOw0iH-P-7jDaebw7ezuJMk1gZwAEbdNjv0YnBlyCqTMgeRA2UkyIbOSZaKk4jR6Jng2IwU9Ty5CaAAgej5JXpfdxrsR63RUra3VYF2fGq86_HZ-naq-Tt-yjdJr9YmpcT5VfrDGaqvatMet38uwZztXYxsukzOj2oBXR50mH48P74vnbPXytFzcrzLNCR0yXigOaMjMVKjnSFhFSq1wjlpTYQwreaE1qEpVWAugmhdQiZoZLmAOWJZsmtwccuP5X1sMg2zc1vdxpaTAGWOiJOwflBBFpIoDpb0LwaORG2875X8kAbmrWDbyWLHcVSyByFhxnLs7zMW_cbToZdAWe4219agHWTv7R8IvQliIMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2043336665</pqid></control><display><type>article</type><title>Improved validation framework and R-package for artificial neural network models</title><source>Elsevier ScienceDirect Journals</source><creator>Humphrey, Greer B. ; Maier, Holger R. ; Wu, Wenyan ; Mount, Nick J. ; Dandy, Graeme C. ; Abrahart, Robert J. ; Dawson, Christian W.</creator><creatorcontrib>Humphrey, Greer B. ; Maier, Holger R. ; Wu, Wenyan ; Mount, Nick J. ; Dandy, Graeme C. ; Abrahart, Robert J. ; Dawson, Christian W.</creatorcontrib><description>Validation is a critical component of any modelling process. In artificial neural network (ANN) modelling, validation generally consists of the assessment of model predictive performance on an independent validation set (predictive validity). However, this ignores other aspects of model validation considered to be good practice in other areas of environmental modelling, such as residual analysis (replicative validity) and checking the plausibility of the model in relation to a priori system understanding (structural validity). In order to address this shortcoming, a validation framework for ANNs is introduced in this paper that covers all of the above aspects of validation. In addition, the validann R-package is introduced that enables these validation methods to be implemented in a user-friendly and consistent fashion. The benefits of the framework and R-package are demonstrated for two environmental modelling case studies, highlighting the importance of considering replicative and structural validity in addition to predictive validity.
•A comprehensive validation framework for ANNs is proposed.•The ‘validann’ R-package for implementing the validation framework is introduced.•Application of the framework and R-package is demonstrated on two real case studies.•Results reveal that predictively valid ANN models may not be credible.•Adoption of the framework leads to improvements in overall ANN validity.</description><identifier>ISSN: 1364-8152</identifier><identifier>EISSN: 1873-6726</identifier><identifier>DOI: 10.1016/j.envsoft.2017.01.023</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Artificial neural networks ; Case studies ; Critical components ; Environment models ; Environmental management ; Environmental modeling ; Multi-layer perceptron ; Neural networks ; Performance prediction ; Predictive validation ; R-package ; Replicative validation ; Structural validation ; Studies ; Validity</subject><ispartof>Environmental modelling & software : with environment data news, 2017-06, Vol.92, p.82-106</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jun 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-45a40ef18fbec9e13b17cae9ecc26ff3745cc0ababed602c450b6d3f46090e773</citedby><cites>FETCH-LOGICAL-c412t-45a40ef18fbec9e13b17cae9ecc26ff3745cc0ababed602c450b6d3f46090e773</cites><orcidid>0000-0001-7782-5463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envsoft.2017.01.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Humphrey, Greer B.</creatorcontrib><creatorcontrib>Maier, Holger R.</creatorcontrib><creatorcontrib>Wu, Wenyan</creatorcontrib><creatorcontrib>Mount, Nick J.</creatorcontrib><creatorcontrib>Dandy, Graeme C.</creatorcontrib><creatorcontrib>Abrahart, Robert J.</creatorcontrib><creatorcontrib>Dawson, Christian W.</creatorcontrib><title>Improved validation framework and R-package for artificial neural network models</title><title>Environmental modelling & software : with environment data news</title><description>Validation is a critical component of any modelling process. In artificial neural network (ANN) modelling, validation generally consists of the assessment of model predictive performance on an independent validation set (predictive validity). However, this ignores other aspects of model validation considered to be good practice in other areas of environmental modelling, such as residual analysis (replicative validity) and checking the plausibility of the model in relation to a priori system understanding (structural validity). In order to address this shortcoming, a validation framework for ANNs is introduced in this paper that covers all of the above aspects of validation. In addition, the validann R-package is introduced that enables these validation methods to be implemented in a user-friendly and consistent fashion. The benefits of the framework and R-package are demonstrated for two environmental modelling case studies, highlighting the importance of considering replicative and structural validity in addition to predictive validity.
•A comprehensive validation framework for ANNs is proposed.•The ‘validann’ R-package for implementing the validation framework is introduced.•Application of the framework and R-package is demonstrated on two real case studies.•Results reveal that predictively valid ANN models may not be credible.•Adoption of the framework leads to improvements in overall ANN validity.</description><subject>Artificial neural networks</subject><subject>Case studies</subject><subject>Critical components</subject><subject>Environment models</subject><subject>Environmental management</subject><subject>Environmental modeling</subject><subject>Multi-layer perceptron</subject><subject>Neural networks</subject><subject>Performance prediction</subject><subject>Predictive validation</subject><subject>R-package</subject><subject>Replicative validation</subject><subject>Structural validation</subject><subject>Studies</subject><subject>Validity</subject><issn>1364-8152</issn><issn>1873-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhCMEEqXwE5AicU5YP-K0J4QqHpUqgRCcLcdZI6dJXOw0iH-P-7jDaebw7ezuJMk1gZwAEbdNjv0YnBlyCqTMgeRA2UkyIbOSZaKk4jR6Jng2IwU9Ty5CaAAgej5JXpfdxrsR63RUra3VYF2fGq86_HZ-naq-Tt-yjdJr9YmpcT5VfrDGaqvatMet38uwZztXYxsukzOj2oBXR50mH48P74vnbPXytFzcrzLNCR0yXigOaMjMVKjnSFhFSq1wjlpTYQwreaE1qEpVWAugmhdQiZoZLmAOWJZsmtwccuP5X1sMg2zc1vdxpaTAGWOiJOwflBBFpIoDpb0LwaORG2875X8kAbmrWDbyWLHcVSyByFhxnLs7zMW_cbToZdAWe4219agHWTv7R8IvQliIMw</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Humphrey, Greer B.</creator><creator>Maier, Holger R.</creator><creator>Wu, Wenyan</creator><creator>Mount, Nick J.</creator><creator>Dandy, Graeme C.</creator><creator>Abrahart, Robert J.</creator><creator>Dawson, Christian W.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7782-5463</orcidid></search><sort><creationdate>20170601</creationdate><title>Improved validation framework and R-package for artificial neural network models</title><author>Humphrey, Greer B. ; Maier, Holger R. ; Wu, Wenyan ; Mount, Nick J. ; Dandy, Graeme C. ; Abrahart, Robert J. ; Dawson, Christian W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-45a40ef18fbec9e13b17cae9ecc26ff3745cc0ababed602c450b6d3f46090e773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Case studies</topic><topic>Critical components</topic><topic>Environment models</topic><topic>Environmental management</topic><topic>Environmental modeling</topic><topic>Multi-layer perceptron</topic><topic>Neural networks</topic><topic>Performance prediction</topic><topic>Predictive validation</topic><topic>R-package</topic><topic>Replicative validation</topic><topic>Structural validation</topic><topic>Studies</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Humphrey, Greer B.</creatorcontrib><creatorcontrib>Maier, Holger R.</creatorcontrib><creatorcontrib>Wu, Wenyan</creatorcontrib><creatorcontrib>Mount, Nick J.</creatorcontrib><creatorcontrib>Dandy, Graeme C.</creatorcontrib><creatorcontrib>Abrahart, Robert J.</creatorcontrib><creatorcontrib>Dawson, Christian W.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental modelling & software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Humphrey, Greer B.</au><au>Maier, Holger R.</au><au>Wu, Wenyan</au><au>Mount, Nick J.</au><au>Dandy, Graeme C.</au><au>Abrahart, Robert J.</au><au>Dawson, Christian W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved validation framework and R-package for artificial neural network models</atitle><jtitle>Environmental modelling & software : with environment data news</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>92</volume><spage>82</spage><epage>106</epage><pages>82-106</pages><issn>1364-8152</issn><eissn>1873-6726</eissn><abstract>Validation is a critical component of any modelling process. In artificial neural network (ANN) modelling, validation generally consists of the assessment of model predictive performance on an independent validation set (predictive validity). However, this ignores other aspects of model validation considered to be good practice in other areas of environmental modelling, such as residual analysis (replicative validity) and checking the plausibility of the model in relation to a priori system understanding (structural validity). In order to address this shortcoming, a validation framework for ANNs is introduced in this paper that covers all of the above aspects of validation. In addition, the validann R-package is introduced that enables these validation methods to be implemented in a user-friendly and consistent fashion. The benefits of the framework and R-package are demonstrated for two environmental modelling case studies, highlighting the importance of considering replicative and structural validity in addition to predictive validity.
•A comprehensive validation framework for ANNs is proposed.•The ‘validann’ R-package for implementing the validation framework is introduced.•Application of the framework and R-package is demonstrated on two real case studies.•Results reveal that predictively valid ANN models may not be credible.•Adoption of the framework leads to improvements in overall ANN validity.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2017.01.023</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-7782-5463</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-8152 |
ispartof | Environmental modelling & software : with environment data news, 2017-06, Vol.92, p.82-106 |
issn | 1364-8152 1873-6726 |
language | eng |
recordid | cdi_proquest_journals_2043336713 |
source | Elsevier ScienceDirect Journals |
subjects | Artificial neural networks Case studies Critical components Environment models Environmental management Environmental modeling Multi-layer perceptron Neural networks Performance prediction Predictive validation R-package Replicative validation Structural validation Studies Validity |
title | Improved validation framework and R-package for artificial neural network models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20validation%20framework%20and%20R-package%20for%20artificial%20neural%20network%20models&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Humphrey,%20Greer%20B.&rft.date=2017-06-01&rft.volume=92&rft.spage=82&rft.epage=106&rft.pages=82-106&rft.issn=1364-8152&rft.eissn=1873-6726&rft_id=info:doi/10.1016/j.envsoft.2017.01.023&rft_dat=%3Cproquest_cross%3E2043336713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2043336665&rft_id=info:pmid/&rft_els_id=S136481521630963X&rfr_iscdi=true |