Improved validation framework and R-package for artificial neural network models

Validation is a critical component of any modelling process. In artificial neural network (ANN) modelling, validation generally consists of the assessment of model predictive performance on an independent validation set (predictive validity). However, this ignores other aspects of model validation c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental modelling & software : with environment data news 2017-06, Vol.92, p.82-106
Hauptverfasser: Humphrey, Greer B., Maier, Holger R., Wu, Wenyan, Mount, Nick J., Dandy, Graeme C., Abrahart, Robert J., Dawson, Christian W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106
container_issue
container_start_page 82
container_title Environmental modelling & software : with environment data news
container_volume 92
creator Humphrey, Greer B.
Maier, Holger R.
Wu, Wenyan
Mount, Nick J.
Dandy, Graeme C.
Abrahart, Robert J.
Dawson, Christian W.
description Validation is a critical component of any modelling process. In artificial neural network (ANN) modelling, validation generally consists of the assessment of model predictive performance on an independent validation set (predictive validity). However, this ignores other aspects of model validation considered to be good practice in other areas of environmental modelling, such as residual analysis (replicative validity) and checking the plausibility of the model in relation to a priori system understanding (structural validity). In order to address this shortcoming, a validation framework for ANNs is introduced in this paper that covers all of the above aspects of validation. In addition, the validann R-package is introduced that enables these validation methods to be implemented in a user-friendly and consistent fashion. The benefits of the framework and R-package are demonstrated for two environmental modelling case studies, highlighting the importance of considering replicative and structural validity in addition to predictive validity. •A comprehensive validation framework for ANNs is proposed.•The ‘validann’ R-package for implementing the validation framework is introduced.•Application of the framework and R-package is demonstrated on two real case studies.•Results reveal that predictively valid ANN models may not be credible.•Adoption of the framework leads to improvements in overall ANN validity.
doi_str_mv 10.1016/j.envsoft.2017.01.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2043336713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S136481521630963X</els_id><sourcerecordid>2043336713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-45a40ef18fbec9e13b17cae9ecc26ff3745cc0ababed602c450b6d3f46090e773</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhCMEEqXwE5AicU5YP-K0J4QqHpUqgRCcLcdZI6dJXOw0iH-P-7jDaebw7ezuJMk1gZwAEbdNjv0YnBlyCqTMgeRA2UkyIbOSZaKk4jR6Jng2IwU9Ty5CaAAgej5JXpfdxrsR63RUra3VYF2fGq86_HZ-naq-Tt-yjdJr9YmpcT5VfrDGaqvatMet38uwZztXYxsukzOj2oBXR50mH48P74vnbPXytFzcrzLNCR0yXigOaMjMVKjnSFhFSq1wjlpTYQwreaE1qEpVWAugmhdQiZoZLmAOWJZsmtwccuP5X1sMg2zc1vdxpaTAGWOiJOwflBBFpIoDpb0LwaORG2875X8kAbmrWDbyWLHcVSyByFhxnLs7zMW_cbToZdAWe4219agHWTv7R8IvQliIMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2043336665</pqid></control><display><type>article</type><title>Improved validation framework and R-package for artificial neural network models</title><source>Elsevier ScienceDirect Journals</source><creator>Humphrey, Greer B. ; Maier, Holger R. ; Wu, Wenyan ; Mount, Nick J. ; Dandy, Graeme C. ; Abrahart, Robert J. ; Dawson, Christian W.</creator><creatorcontrib>Humphrey, Greer B. ; Maier, Holger R. ; Wu, Wenyan ; Mount, Nick J. ; Dandy, Graeme C. ; Abrahart, Robert J. ; Dawson, Christian W.</creatorcontrib><description>Validation is a critical component of any modelling process. In artificial neural network (ANN) modelling, validation generally consists of the assessment of model predictive performance on an independent validation set (predictive validity). However, this ignores other aspects of model validation considered to be good practice in other areas of environmental modelling, such as residual analysis (replicative validity) and checking the plausibility of the model in relation to a priori system understanding (structural validity). In order to address this shortcoming, a validation framework for ANNs is introduced in this paper that covers all of the above aspects of validation. In addition, the validann R-package is introduced that enables these validation methods to be implemented in a user-friendly and consistent fashion. The benefits of the framework and R-package are demonstrated for two environmental modelling case studies, highlighting the importance of considering replicative and structural validity in addition to predictive validity. •A comprehensive validation framework for ANNs is proposed.•The ‘validann’ R-package for implementing the validation framework is introduced.•Application of the framework and R-package is demonstrated on two real case studies.•Results reveal that predictively valid ANN models may not be credible.•Adoption of the framework leads to improvements in overall ANN validity.</description><identifier>ISSN: 1364-8152</identifier><identifier>EISSN: 1873-6726</identifier><identifier>DOI: 10.1016/j.envsoft.2017.01.023</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Artificial neural networks ; Case studies ; Critical components ; Environment models ; Environmental management ; Environmental modeling ; Multi-layer perceptron ; Neural networks ; Performance prediction ; Predictive validation ; R-package ; Replicative validation ; Structural validation ; Studies ; Validity</subject><ispartof>Environmental modelling &amp; software : with environment data news, 2017-06, Vol.92, p.82-106</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jun 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-45a40ef18fbec9e13b17cae9ecc26ff3745cc0ababed602c450b6d3f46090e773</citedby><cites>FETCH-LOGICAL-c412t-45a40ef18fbec9e13b17cae9ecc26ff3745cc0ababed602c450b6d3f46090e773</cites><orcidid>0000-0001-7782-5463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envsoft.2017.01.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Humphrey, Greer B.</creatorcontrib><creatorcontrib>Maier, Holger R.</creatorcontrib><creatorcontrib>Wu, Wenyan</creatorcontrib><creatorcontrib>Mount, Nick J.</creatorcontrib><creatorcontrib>Dandy, Graeme C.</creatorcontrib><creatorcontrib>Abrahart, Robert J.</creatorcontrib><creatorcontrib>Dawson, Christian W.</creatorcontrib><title>Improved validation framework and R-package for artificial neural network models</title><title>Environmental modelling &amp; software : with environment data news</title><description>Validation is a critical component of any modelling process. In artificial neural network (ANN) modelling, validation generally consists of the assessment of model predictive performance on an independent validation set (predictive validity). However, this ignores other aspects of model validation considered to be good practice in other areas of environmental modelling, such as residual analysis (replicative validity) and checking the plausibility of the model in relation to a priori system understanding (structural validity). In order to address this shortcoming, a validation framework for ANNs is introduced in this paper that covers all of the above aspects of validation. In addition, the validann R-package is introduced that enables these validation methods to be implemented in a user-friendly and consistent fashion. The benefits of the framework and R-package are demonstrated for two environmental modelling case studies, highlighting the importance of considering replicative and structural validity in addition to predictive validity. •A comprehensive validation framework for ANNs is proposed.•The ‘validann’ R-package for implementing the validation framework is introduced.•Application of the framework and R-package is demonstrated on two real case studies.•Results reveal that predictively valid ANN models may not be credible.•Adoption of the framework leads to improvements in overall ANN validity.</description><subject>Artificial neural networks</subject><subject>Case studies</subject><subject>Critical components</subject><subject>Environment models</subject><subject>Environmental management</subject><subject>Environmental modeling</subject><subject>Multi-layer perceptron</subject><subject>Neural networks</subject><subject>Performance prediction</subject><subject>Predictive validation</subject><subject>R-package</subject><subject>Replicative validation</subject><subject>Structural validation</subject><subject>Studies</subject><subject>Validity</subject><issn>1364-8152</issn><issn>1873-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhCMEEqXwE5AicU5YP-K0J4QqHpUqgRCcLcdZI6dJXOw0iH-P-7jDaebw7ezuJMk1gZwAEbdNjv0YnBlyCqTMgeRA2UkyIbOSZaKk4jR6Jng2IwU9Ty5CaAAgej5JXpfdxrsR63RUra3VYF2fGq86_HZ-naq-Tt-yjdJr9YmpcT5VfrDGaqvatMet38uwZztXYxsukzOj2oBXR50mH48P74vnbPXytFzcrzLNCR0yXigOaMjMVKjnSFhFSq1wjlpTYQwreaE1qEpVWAugmhdQiZoZLmAOWJZsmtwccuP5X1sMg2zc1vdxpaTAGWOiJOwflBBFpIoDpb0LwaORG2875X8kAbmrWDbyWLHcVSyByFhxnLs7zMW_cbToZdAWe4219agHWTv7R8IvQliIMw</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Humphrey, Greer B.</creator><creator>Maier, Holger R.</creator><creator>Wu, Wenyan</creator><creator>Mount, Nick J.</creator><creator>Dandy, Graeme C.</creator><creator>Abrahart, Robert J.</creator><creator>Dawson, Christian W.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7782-5463</orcidid></search><sort><creationdate>20170601</creationdate><title>Improved validation framework and R-package for artificial neural network models</title><author>Humphrey, Greer B. ; Maier, Holger R. ; Wu, Wenyan ; Mount, Nick J. ; Dandy, Graeme C. ; Abrahart, Robert J. ; Dawson, Christian W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-45a40ef18fbec9e13b17cae9ecc26ff3745cc0ababed602c450b6d3f46090e773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Case studies</topic><topic>Critical components</topic><topic>Environment models</topic><topic>Environmental management</topic><topic>Environmental modeling</topic><topic>Multi-layer perceptron</topic><topic>Neural networks</topic><topic>Performance prediction</topic><topic>Predictive validation</topic><topic>R-package</topic><topic>Replicative validation</topic><topic>Structural validation</topic><topic>Studies</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Humphrey, Greer B.</creatorcontrib><creatorcontrib>Maier, Holger R.</creatorcontrib><creatorcontrib>Wu, Wenyan</creatorcontrib><creatorcontrib>Mount, Nick J.</creatorcontrib><creatorcontrib>Dandy, Graeme C.</creatorcontrib><creatorcontrib>Abrahart, Robert J.</creatorcontrib><creatorcontrib>Dawson, Christian W.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental modelling &amp; software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Humphrey, Greer B.</au><au>Maier, Holger R.</au><au>Wu, Wenyan</au><au>Mount, Nick J.</au><au>Dandy, Graeme C.</au><au>Abrahart, Robert J.</au><au>Dawson, Christian W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved validation framework and R-package for artificial neural network models</atitle><jtitle>Environmental modelling &amp; software : with environment data news</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>92</volume><spage>82</spage><epage>106</epage><pages>82-106</pages><issn>1364-8152</issn><eissn>1873-6726</eissn><abstract>Validation is a critical component of any modelling process. In artificial neural network (ANN) modelling, validation generally consists of the assessment of model predictive performance on an independent validation set (predictive validity). However, this ignores other aspects of model validation considered to be good practice in other areas of environmental modelling, such as residual analysis (replicative validity) and checking the plausibility of the model in relation to a priori system understanding (structural validity). In order to address this shortcoming, a validation framework for ANNs is introduced in this paper that covers all of the above aspects of validation. In addition, the validann R-package is introduced that enables these validation methods to be implemented in a user-friendly and consistent fashion. The benefits of the framework and R-package are demonstrated for two environmental modelling case studies, highlighting the importance of considering replicative and structural validity in addition to predictive validity. •A comprehensive validation framework for ANNs is proposed.•The ‘validann’ R-package for implementing the validation framework is introduced.•Application of the framework and R-package is demonstrated on two real case studies.•Results reveal that predictively valid ANN models may not be credible.•Adoption of the framework leads to improvements in overall ANN validity.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2017.01.023</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-7782-5463</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-8152
ispartof Environmental modelling & software : with environment data news, 2017-06, Vol.92, p.82-106
issn 1364-8152
1873-6726
language eng
recordid cdi_proquest_journals_2043336713
source Elsevier ScienceDirect Journals
subjects Artificial neural networks
Case studies
Critical components
Environment models
Environmental management
Environmental modeling
Multi-layer perceptron
Neural networks
Performance prediction
Predictive validation
R-package
Replicative validation
Structural validation
Studies
Validity
title Improved validation framework and R-package for artificial neural network models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20validation%20framework%20and%20R-package%20for%20artificial%20neural%20network%20models&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Humphrey,%20Greer%20B.&rft.date=2017-06-01&rft.volume=92&rft.spage=82&rft.epage=106&rft.pages=82-106&rft.issn=1364-8152&rft.eissn=1873-6726&rft_id=info:doi/10.1016/j.envsoft.2017.01.023&rft_dat=%3Cproquest_cross%3E2043336713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2043336665&rft_id=info:pmid/&rft_els_id=S136481521630963X&rfr_iscdi=true