Detecting spatial patterns of rivermouth processes using a geostatistical framework for near-real-time analysis
This paper proposes a geospatial analysis framework and software to interpret water-quality sampling data from towed undulating vehicles in near-real time. The framework includes data quality assurance and quality control processes, automated kriging interpolation along undulating paths, and local h...
Gespeichert in:
Veröffentlicht in: | Environmental modelling & software : with environment data news 2017-11, Vol.97, p.72-85 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | |
container_start_page | 72 |
container_title | Environmental modelling & software : with environment data news |
container_volume | 97 |
creator | Xu, Wenzhao Collingsworth, Paris Bailey, Barbara Carlson Mazur, Martha Schaeffer, Jeffrey Minsker, Barbara |
description | This paper proposes a geospatial analysis framework and software to interpret water-quality sampling data from towed undulating vehicles in near-real time. The framework includes data quality assurance and quality control processes, automated kriging interpolation along undulating paths, and local hotspot and cluster analyses. These methods are implemented in an interactive Web application developed using the Shiny package in the R programming environment to support near-real time analysis along with 2- and 3-D visualizations. The approach is demonstrated using historical sampling data from an undulating vehicle deployed at three rivermouth sites in Lake Michigan during 2011. The normalized root-mean-square error (NRMSE) of the interpolation averages approximately 10% in 3-fold cross validation. The results show that the framework can be used to track river plume dynamics and provide insights on mixing, which could be related to wind and seiche events.
•A geostatistical analyzing framework is developed for undulating sampling data.•Hotspot and cluster analysis reveal river plume orientation and water mixing area.•The framework supports near-real-time analysis and adaptive monitoring.•The methods are implemented into an open source Web application in R. |
doi_str_mv | 10.1016/j.envsoft.2017.06.049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2043336622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815216302791</els_id><sourcerecordid>2043336622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-45011443bf630c2c66cef47be2ab7814a136ab01caf622a00b0496167c59e1613</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEqXwCEiWOCfYseOkJ4T4lypxgbPluOvikMTF6xT17XHV3jntHuab3Zksu2a0YJTJ266AcYvexqKkrC6oLKhYnGQz1tQ8l3UpT9POpcgbVpXn2QViRylNu5hl_hEimOjGNcGNjk73JI0IYUTiLQluC2HwU_wim-ANIAKSCfdyTdbgMSYGozOJs0EP8OvDN7E-kBF0yAPoPo9uAKJH3e_Q4WV2ZnWPcHWc8-zz-enj4TVfvr-8Pdwvc8MbEXNRUcaE4K2VnJrSSGnAirqFUrd1w4ROeXRLmdFWlqWmtE2RJZO1qRbAJOPz7Obgm97-mQCj6vwU0hOoSio45zJxSVUdVCZ4xABWbYIbdNgpRtW-W9WpY7dq362iUqVDibs7cJAibB0EhcbBaGDlQmpTrbz7x-EPGfKHXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2043336622</pqid></control><display><type>article</type><title>Detecting spatial patterns of rivermouth processes using a geostatistical framework for near-real-time analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Xu, Wenzhao ; Collingsworth, Paris ; Bailey, Barbara ; Carlson Mazur, Martha ; Schaeffer, Jeffrey ; Minsker, Barbara</creator><creatorcontrib>Xu, Wenzhao ; Collingsworth, Paris ; Bailey, Barbara ; Carlson Mazur, Martha ; Schaeffer, Jeffrey ; Minsker, Barbara</creatorcontrib><description>This paper proposes a geospatial analysis framework and software to interpret water-quality sampling data from towed undulating vehicles in near-real time. The framework includes data quality assurance and quality control processes, automated kriging interpolation along undulating paths, and local hotspot and cluster analyses. These methods are implemented in an interactive Web application developed using the Shiny package in the R programming environment to support near-real time analysis along with 2- and 3-D visualizations. The approach is demonstrated using historical sampling data from an undulating vehicle deployed at three rivermouth sites in Lake Michigan during 2011. The normalized root-mean-square error (NRMSE) of the interpolation averages approximately 10% in 3-fold cross validation. The results show that the framework can be used to track river plume dynamics and provide insights on mixing, which could be related to wind and seiche events.
•A geostatistical analyzing framework is developed for undulating sampling data.•Hotspot and cluster analysis reveal river plume orientation and water mixing area.•The framework supports near-real-time analysis and adaptive monitoring.•The methods are implemented into an open source Web application in R.</description><identifier>ISSN: 1364-8152</identifier><identifier>EISSN: 1873-6726</identifier><identifier>DOI: 10.1016/j.envsoft.2017.06.049</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adaptive sampling ; Automatic control ; Data processing ; Decision support ; Dynamic ; Geographic information systems ; Geostatistics ; Interpolation ; Kriging interpolation ; Plumes ; Quality assurance ; Quality control ; Real time ; River plumes ; Rivermouth ; Rivers ; Sampling ; Spatial analysis ; Spatial data ; Water quality</subject><ispartof>Environmental modelling & software : with environment data news, 2017-11, Vol.97, p.72-85</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-45011443bf630c2c66cef47be2ab7814a136ab01caf622a00b0496167c59e1613</citedby><cites>FETCH-LOGICAL-c384t-45011443bf630c2c66cef47be2ab7814a136ab01caf622a00b0496167c59e1613</cites><orcidid>0000-0003-3294-3065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1364815216302791$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Xu, Wenzhao</creatorcontrib><creatorcontrib>Collingsworth, Paris</creatorcontrib><creatorcontrib>Bailey, Barbara</creatorcontrib><creatorcontrib>Carlson Mazur, Martha</creatorcontrib><creatorcontrib>Schaeffer, Jeffrey</creatorcontrib><creatorcontrib>Minsker, Barbara</creatorcontrib><title>Detecting spatial patterns of rivermouth processes using a geostatistical framework for near-real-time analysis</title><title>Environmental modelling & software : with environment data news</title><description>This paper proposes a geospatial analysis framework and software to interpret water-quality sampling data from towed undulating vehicles in near-real time. The framework includes data quality assurance and quality control processes, automated kriging interpolation along undulating paths, and local hotspot and cluster analyses. These methods are implemented in an interactive Web application developed using the Shiny package in the R programming environment to support near-real time analysis along with 2- and 3-D visualizations. The approach is demonstrated using historical sampling data from an undulating vehicle deployed at three rivermouth sites in Lake Michigan during 2011. The normalized root-mean-square error (NRMSE) of the interpolation averages approximately 10% in 3-fold cross validation. The results show that the framework can be used to track river plume dynamics and provide insights on mixing, which could be related to wind and seiche events.
•A geostatistical analyzing framework is developed for undulating sampling data.•Hotspot and cluster analysis reveal river plume orientation and water mixing area.•The framework supports near-real-time analysis and adaptive monitoring.•The methods are implemented into an open source Web application in R.</description><subject>Adaptive sampling</subject><subject>Automatic control</subject><subject>Data processing</subject><subject>Decision support</subject><subject>Dynamic</subject><subject>Geographic information systems</subject><subject>Geostatistics</subject><subject>Interpolation</subject><subject>Kriging interpolation</subject><subject>Plumes</subject><subject>Quality assurance</subject><subject>Quality control</subject><subject>Real time</subject><subject>River plumes</subject><subject>Rivermouth</subject><subject>Rivers</subject><subject>Sampling</subject><subject>Spatial analysis</subject><subject>Spatial data</subject><subject>Water quality</subject><issn>1364-8152</issn><issn>1873-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEEqXwCEiWOCfYseOkJ4T4lypxgbPluOvikMTF6xT17XHV3jntHuab3Zksu2a0YJTJ266AcYvexqKkrC6oLKhYnGQz1tQ8l3UpT9POpcgbVpXn2QViRylNu5hl_hEimOjGNcGNjk73JI0IYUTiLQluC2HwU_wim-ANIAKSCfdyTdbgMSYGozOJs0EP8OvDN7E-kBF0yAPoPo9uAKJH3e_Q4WV2ZnWPcHWc8-zz-enj4TVfvr-8Pdwvc8MbEXNRUcaE4K2VnJrSSGnAirqFUrd1w4ROeXRLmdFWlqWmtE2RJZO1qRbAJOPz7Obgm97-mQCj6vwU0hOoSio45zJxSVUdVCZ4xABWbYIbdNgpRtW-W9WpY7dq362iUqVDibs7cJAibB0EhcbBaGDlQmpTrbz7x-EPGfKHXw</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Xu, Wenzhao</creator><creator>Collingsworth, Paris</creator><creator>Bailey, Barbara</creator><creator>Carlson Mazur, Martha</creator><creator>Schaeffer, Jeffrey</creator><creator>Minsker, Barbara</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3294-3065</orcidid></search><sort><creationdate>20171101</creationdate><title>Detecting spatial patterns of rivermouth processes using a geostatistical framework for near-real-time analysis</title><author>Xu, Wenzhao ; Collingsworth, Paris ; Bailey, Barbara ; Carlson Mazur, Martha ; Schaeffer, Jeffrey ; Minsker, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-45011443bf630c2c66cef47be2ab7814a136ab01caf622a00b0496167c59e1613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive sampling</topic><topic>Automatic control</topic><topic>Data processing</topic><topic>Decision support</topic><topic>Dynamic</topic><topic>Geographic information systems</topic><topic>Geostatistics</topic><topic>Interpolation</topic><topic>Kriging interpolation</topic><topic>Plumes</topic><topic>Quality assurance</topic><topic>Quality control</topic><topic>Real time</topic><topic>River plumes</topic><topic>Rivermouth</topic><topic>Rivers</topic><topic>Sampling</topic><topic>Spatial analysis</topic><topic>Spatial data</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wenzhao</creatorcontrib><creatorcontrib>Collingsworth, Paris</creatorcontrib><creatorcontrib>Bailey, Barbara</creatorcontrib><creatorcontrib>Carlson Mazur, Martha</creatorcontrib><creatorcontrib>Schaeffer, Jeffrey</creatorcontrib><creatorcontrib>Minsker, Barbara</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental modelling & software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Wenzhao</au><au>Collingsworth, Paris</au><au>Bailey, Barbara</au><au>Carlson Mazur, Martha</au><au>Schaeffer, Jeffrey</au><au>Minsker, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting spatial patterns of rivermouth processes using a geostatistical framework for near-real-time analysis</atitle><jtitle>Environmental modelling & software : with environment data news</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>97</volume><spage>72</spage><epage>85</epage><pages>72-85</pages><issn>1364-8152</issn><eissn>1873-6726</eissn><abstract>This paper proposes a geospatial analysis framework and software to interpret water-quality sampling data from towed undulating vehicles in near-real time. The framework includes data quality assurance and quality control processes, automated kriging interpolation along undulating paths, and local hotspot and cluster analyses. These methods are implemented in an interactive Web application developed using the Shiny package in the R programming environment to support near-real time analysis along with 2- and 3-D visualizations. The approach is demonstrated using historical sampling data from an undulating vehicle deployed at three rivermouth sites in Lake Michigan during 2011. The normalized root-mean-square error (NRMSE) of the interpolation averages approximately 10% in 3-fold cross validation. The results show that the framework can be used to track river plume dynamics and provide insights on mixing, which could be related to wind and seiche events.
•A geostatistical analyzing framework is developed for undulating sampling data.•Hotspot and cluster analysis reveal river plume orientation and water mixing area.•The framework supports near-real-time analysis and adaptive monitoring.•The methods are implemented into an open source Web application in R.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2017.06.049</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3294-3065</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-8152 |
ispartof | Environmental modelling & software : with environment data news, 2017-11, Vol.97, p.72-85 |
issn | 1364-8152 1873-6726 |
language | eng |
recordid | cdi_proquest_journals_2043336622 |
source | Elsevier ScienceDirect Journals |
subjects | Adaptive sampling Automatic control Data processing Decision support Dynamic Geographic information systems Geostatistics Interpolation Kriging interpolation Plumes Quality assurance Quality control Real time River plumes Rivermouth Rivers Sampling Spatial analysis Spatial data Water quality |
title | Detecting spatial patterns of rivermouth processes using a geostatistical framework for near-real-time analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A13%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20spatial%20patterns%20of%20rivermouth%20processes%20using%20a%20geostatistical%20framework%20for%20near-real-time%20analysis&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Xu,%20Wenzhao&rft.date=2017-11-01&rft.volume=97&rft.spage=72&rft.epage=85&rft.pages=72-85&rft.issn=1364-8152&rft.eissn=1873-6726&rft_id=info:doi/10.1016/j.envsoft.2017.06.049&rft_dat=%3Cproquest_cross%3E2043336622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2043336622&rft_id=info:pmid/&rft_els_id=S1364815216302791&rfr_iscdi=true |