Detecting spatial patterns of rivermouth processes using a geostatistical framework for near-real-time analysis

This paper proposes a geospatial analysis framework and software to interpret water-quality sampling data from towed undulating vehicles in near-real time. The framework includes data quality assurance and quality control processes, automated kriging interpolation along undulating paths, and local h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental modelling & software : with environment data news 2017-11, Vol.97, p.72-85
Hauptverfasser: Xu, Wenzhao, Collingsworth, Paris, Bailey, Barbara, Carlson Mazur, Martha, Schaeffer, Jeffrey, Minsker, Barbara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue
container_start_page 72
container_title Environmental modelling & software : with environment data news
container_volume 97
creator Xu, Wenzhao
Collingsworth, Paris
Bailey, Barbara
Carlson Mazur, Martha
Schaeffer, Jeffrey
Minsker, Barbara
description This paper proposes a geospatial analysis framework and software to interpret water-quality sampling data from towed undulating vehicles in near-real time. The framework includes data quality assurance and quality control processes, automated kriging interpolation along undulating paths, and local hotspot and cluster analyses. These methods are implemented in an interactive Web application developed using the Shiny package in the R programming environment to support near-real time analysis along with 2- and 3-D visualizations. The approach is demonstrated using historical sampling data from an undulating vehicle deployed at three rivermouth sites in Lake Michigan during 2011. The normalized root-mean-square error (NRMSE) of the interpolation averages approximately 10% in 3-fold cross validation. The results show that the framework can be used to track river plume dynamics and provide insights on mixing, which could be related to wind and seiche events. •A geostatistical analyzing framework is developed for undulating sampling data.•Hotspot and cluster analysis reveal river plume orientation and water mixing area.•The framework supports near-real-time analysis and adaptive monitoring.•The methods are implemented into an open source Web application in R.
doi_str_mv 10.1016/j.envsoft.2017.06.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2043336622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815216302791</els_id><sourcerecordid>2043336622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-45011443bf630c2c66cef47be2ab7814a136ab01caf622a00b0496167c59e1613</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEqXwCEiWOCfYseOkJ4T4lypxgbPluOvikMTF6xT17XHV3jntHuab3Zksu2a0YJTJ266AcYvexqKkrC6oLKhYnGQz1tQ8l3UpT9POpcgbVpXn2QViRylNu5hl_hEimOjGNcGNjk73JI0IYUTiLQluC2HwU_wim-ANIAKSCfdyTdbgMSYGozOJs0EP8OvDN7E-kBF0yAPoPo9uAKJH3e_Q4WV2ZnWPcHWc8-zz-enj4TVfvr-8Pdwvc8MbEXNRUcaE4K2VnJrSSGnAirqFUrd1w4ROeXRLmdFWlqWmtE2RJZO1qRbAJOPz7Obgm97-mQCj6vwU0hOoSio45zJxSVUdVCZ4xABWbYIbdNgpRtW-W9WpY7dq362iUqVDibs7cJAibB0EhcbBaGDlQmpTrbz7x-EPGfKHXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2043336622</pqid></control><display><type>article</type><title>Detecting spatial patterns of rivermouth processes using a geostatistical framework for near-real-time analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Xu, Wenzhao ; Collingsworth, Paris ; Bailey, Barbara ; Carlson Mazur, Martha ; Schaeffer, Jeffrey ; Minsker, Barbara</creator><creatorcontrib>Xu, Wenzhao ; Collingsworth, Paris ; Bailey, Barbara ; Carlson Mazur, Martha ; Schaeffer, Jeffrey ; Minsker, Barbara</creatorcontrib><description>This paper proposes a geospatial analysis framework and software to interpret water-quality sampling data from towed undulating vehicles in near-real time. The framework includes data quality assurance and quality control processes, automated kriging interpolation along undulating paths, and local hotspot and cluster analyses. These methods are implemented in an interactive Web application developed using the Shiny package in the R programming environment to support near-real time analysis along with 2- and 3-D visualizations. The approach is demonstrated using historical sampling data from an undulating vehicle deployed at three rivermouth sites in Lake Michigan during 2011. The normalized root-mean-square error (NRMSE) of the interpolation averages approximately 10% in 3-fold cross validation. The results show that the framework can be used to track river plume dynamics and provide insights on mixing, which could be related to wind and seiche events. •A geostatistical analyzing framework is developed for undulating sampling data.•Hotspot and cluster analysis reveal river plume orientation and water mixing area.•The framework supports near-real-time analysis and adaptive monitoring.•The methods are implemented into an open source Web application in R.</description><identifier>ISSN: 1364-8152</identifier><identifier>EISSN: 1873-6726</identifier><identifier>DOI: 10.1016/j.envsoft.2017.06.049</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adaptive sampling ; Automatic control ; Data processing ; Decision support ; Dynamic ; Geographic information systems ; Geostatistics ; Interpolation ; Kriging interpolation ; Plumes ; Quality assurance ; Quality control ; Real time ; River plumes ; Rivermouth ; Rivers ; Sampling ; Spatial analysis ; Spatial data ; Water quality</subject><ispartof>Environmental modelling &amp; software : with environment data news, 2017-11, Vol.97, p.72-85</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-45011443bf630c2c66cef47be2ab7814a136ab01caf622a00b0496167c59e1613</citedby><cites>FETCH-LOGICAL-c384t-45011443bf630c2c66cef47be2ab7814a136ab01caf622a00b0496167c59e1613</cites><orcidid>0000-0003-3294-3065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1364815216302791$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Xu, Wenzhao</creatorcontrib><creatorcontrib>Collingsworth, Paris</creatorcontrib><creatorcontrib>Bailey, Barbara</creatorcontrib><creatorcontrib>Carlson Mazur, Martha</creatorcontrib><creatorcontrib>Schaeffer, Jeffrey</creatorcontrib><creatorcontrib>Minsker, Barbara</creatorcontrib><title>Detecting spatial patterns of rivermouth processes using a geostatistical framework for near-real-time analysis</title><title>Environmental modelling &amp; software : with environment data news</title><description>This paper proposes a geospatial analysis framework and software to interpret water-quality sampling data from towed undulating vehicles in near-real time. The framework includes data quality assurance and quality control processes, automated kriging interpolation along undulating paths, and local hotspot and cluster analyses. These methods are implemented in an interactive Web application developed using the Shiny package in the R programming environment to support near-real time analysis along with 2- and 3-D visualizations. The approach is demonstrated using historical sampling data from an undulating vehicle deployed at three rivermouth sites in Lake Michigan during 2011. The normalized root-mean-square error (NRMSE) of the interpolation averages approximately 10% in 3-fold cross validation. The results show that the framework can be used to track river plume dynamics and provide insights on mixing, which could be related to wind and seiche events. •A geostatistical analyzing framework is developed for undulating sampling data.•Hotspot and cluster analysis reveal river plume orientation and water mixing area.•The framework supports near-real-time analysis and adaptive monitoring.•The methods are implemented into an open source Web application in R.</description><subject>Adaptive sampling</subject><subject>Automatic control</subject><subject>Data processing</subject><subject>Decision support</subject><subject>Dynamic</subject><subject>Geographic information systems</subject><subject>Geostatistics</subject><subject>Interpolation</subject><subject>Kriging interpolation</subject><subject>Plumes</subject><subject>Quality assurance</subject><subject>Quality control</subject><subject>Real time</subject><subject>River plumes</subject><subject>Rivermouth</subject><subject>Rivers</subject><subject>Sampling</subject><subject>Spatial analysis</subject><subject>Spatial data</subject><subject>Water quality</subject><issn>1364-8152</issn><issn>1873-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEEqXwCEiWOCfYseOkJ4T4lypxgbPluOvikMTF6xT17XHV3jntHuab3Zksu2a0YJTJ266AcYvexqKkrC6oLKhYnGQz1tQ8l3UpT9POpcgbVpXn2QViRylNu5hl_hEimOjGNcGNjk73JI0IYUTiLQluC2HwU_wim-ANIAKSCfdyTdbgMSYGozOJs0EP8OvDN7E-kBF0yAPoPo9uAKJH3e_Q4WV2ZnWPcHWc8-zz-enj4TVfvr-8Pdwvc8MbEXNRUcaE4K2VnJrSSGnAirqFUrd1w4ROeXRLmdFWlqWmtE2RJZO1qRbAJOPz7Obgm97-mQCj6vwU0hOoSio45zJxSVUdVCZ4xABWbYIbdNgpRtW-W9WpY7dq362iUqVDibs7cJAibB0EhcbBaGDlQmpTrbz7x-EPGfKHXw</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Xu, Wenzhao</creator><creator>Collingsworth, Paris</creator><creator>Bailey, Barbara</creator><creator>Carlson Mazur, Martha</creator><creator>Schaeffer, Jeffrey</creator><creator>Minsker, Barbara</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3294-3065</orcidid></search><sort><creationdate>20171101</creationdate><title>Detecting spatial patterns of rivermouth processes using a geostatistical framework for near-real-time analysis</title><author>Xu, Wenzhao ; Collingsworth, Paris ; Bailey, Barbara ; Carlson Mazur, Martha ; Schaeffer, Jeffrey ; Minsker, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-45011443bf630c2c66cef47be2ab7814a136ab01caf622a00b0496167c59e1613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive sampling</topic><topic>Automatic control</topic><topic>Data processing</topic><topic>Decision support</topic><topic>Dynamic</topic><topic>Geographic information systems</topic><topic>Geostatistics</topic><topic>Interpolation</topic><topic>Kriging interpolation</topic><topic>Plumes</topic><topic>Quality assurance</topic><topic>Quality control</topic><topic>Real time</topic><topic>River plumes</topic><topic>Rivermouth</topic><topic>Rivers</topic><topic>Sampling</topic><topic>Spatial analysis</topic><topic>Spatial data</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wenzhao</creatorcontrib><creatorcontrib>Collingsworth, Paris</creatorcontrib><creatorcontrib>Bailey, Barbara</creatorcontrib><creatorcontrib>Carlson Mazur, Martha</creatorcontrib><creatorcontrib>Schaeffer, Jeffrey</creatorcontrib><creatorcontrib>Minsker, Barbara</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental modelling &amp; software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Wenzhao</au><au>Collingsworth, Paris</au><au>Bailey, Barbara</au><au>Carlson Mazur, Martha</au><au>Schaeffer, Jeffrey</au><au>Minsker, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting spatial patterns of rivermouth processes using a geostatistical framework for near-real-time analysis</atitle><jtitle>Environmental modelling &amp; software : with environment data news</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>97</volume><spage>72</spage><epage>85</epage><pages>72-85</pages><issn>1364-8152</issn><eissn>1873-6726</eissn><abstract>This paper proposes a geospatial analysis framework and software to interpret water-quality sampling data from towed undulating vehicles in near-real time. The framework includes data quality assurance and quality control processes, automated kriging interpolation along undulating paths, and local hotspot and cluster analyses. These methods are implemented in an interactive Web application developed using the Shiny package in the R programming environment to support near-real time analysis along with 2- and 3-D visualizations. The approach is demonstrated using historical sampling data from an undulating vehicle deployed at three rivermouth sites in Lake Michigan during 2011. The normalized root-mean-square error (NRMSE) of the interpolation averages approximately 10% in 3-fold cross validation. The results show that the framework can be used to track river plume dynamics and provide insights on mixing, which could be related to wind and seiche events. •A geostatistical analyzing framework is developed for undulating sampling data.•Hotspot and cluster analysis reveal river plume orientation and water mixing area.•The framework supports near-real-time analysis and adaptive monitoring.•The methods are implemented into an open source Web application in R.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2017.06.049</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3294-3065</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-8152
ispartof Environmental modelling & software : with environment data news, 2017-11, Vol.97, p.72-85
issn 1364-8152
1873-6726
language eng
recordid cdi_proquest_journals_2043336622
source Elsevier ScienceDirect Journals
subjects Adaptive sampling
Automatic control
Data processing
Decision support
Dynamic
Geographic information systems
Geostatistics
Interpolation
Kriging interpolation
Plumes
Quality assurance
Quality control
Real time
River plumes
Rivermouth
Rivers
Sampling
Spatial analysis
Spatial data
Water quality
title Detecting spatial patterns of rivermouth processes using a geostatistical framework for near-real-time analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A13%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20spatial%20patterns%20of%20rivermouth%20processes%20using%20a%20geostatistical%20framework%20for%20near-real-time%20analysis&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Xu,%20Wenzhao&rft.date=2017-11-01&rft.volume=97&rft.spage=72&rft.epage=85&rft.pages=72-85&rft.issn=1364-8152&rft.eissn=1873-6726&rft_id=info:doi/10.1016/j.envsoft.2017.06.049&rft_dat=%3Cproquest_cross%3E2043336622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2043336622&rft_id=info:pmid/&rft_els_id=S1364815216302791&rfr_iscdi=true