Direct policy search for robust multi-objective management of deeply uncertain socio-ecological tipping points
Managing socio-ecological systems is a challenge wrought by competing societal objectives, deep uncertainties, and potentially irreversible tipping points. A classic, didactic example is the shallow lake problem in which a hypothetical town situated on a lake must develop pollution control strategie...
Gespeichert in:
Veröffentlicht in: | Environmental modelling & software : with environment data news 2017-06, Vol.92, p.125-141 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 141 |
---|---|
container_issue | |
container_start_page | 125 |
container_title | Environmental modelling & software : with environment data news |
container_volume | 92 |
creator | Quinn, Julianne D. Reed, Patrick M. Keller, Klaus |
description | Managing socio-ecological systems is a challenge wrought by competing societal objectives, deep uncertainties, and potentially irreversible tipping points. A classic, didactic example is the shallow lake problem in which a hypothetical town situated on a lake must develop pollution control strategies to maximize its economic benefits while minimizing the probability of the lake crossing a critical phosphorus (P) threshold, above which it irreversibly transitions into a eutrophic state. Here, we explore the use of direct policy search (DPS) to design robust pollution control rules for the town that account for deeply uncertain system characteristics and conflicting objectives. The closed loop control formulation of DPS improves the quality and robustness of key management tradeoffs, while dramatically reducing the computational complexity of solving the multi-objective pollution control problem relative to open loop control strategies. These insights suggest DPS is a promising tool for managing socio-ecological systems with deeply uncertain tipping points.
•Managing socio-ecological systems with tipping points is a challenging multi-objective problem.•Direct policy search (DPS) is a computationally efficient method for solving such problems.•Compared to open loop control DPS finds policies that are more robust to deep uncertainties. |
doi_str_mv | 10.1016/j.envsoft.2017.02.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2043336426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815216302250</els_id><sourcerecordid>2043336329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-f34104243b221acde224fc6eda3037aa20ed7f1dc4db0c93d75cde39d401d3d63</originalsourceid><addsrcrecordid>eNqNkUtPwzAQhC0EEqXwE5AscU7wq0l7Qqg8pUpc4Gw59qY4SuxgO5X67zG0dzjNHr7Z1c4gdE1JSQmtbrsS3C76NpWM0LokrMxygmZ0WfOiqll1mmdeiWJJF-wcXcTYEULyLGbIPdgAOuHR91bvcQQV9CdufcDBN1NMeJj6ZAvfdJmyO8CDcmoLA7iEfYsNwNjv8eQ0hKSsw9Fr6wvQvvdbq1WPkx1H67b5gHUpXqKzVvURro46Rx9Pj-_rl2Lz9vy6vt8UWlCWipYLSgQTvGGMKm2AMdHqCozihNdKMQKmbqnRwjREr7ipFxniKyMINdxUfI5uDnvH4L8miEl2fgoun5SMCM5zGuw_FGerTC0OlA4-xgCtHIMdVNhLSuRPAbKTxwLkTwGSMJkl--4OPsiP7iwEGbWFnJT5jVwab__Y8A20gpOa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2043336329</pqid></control><display><type>article</type><title>Direct policy search for robust multi-objective management of deeply uncertain socio-ecological tipping points</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Quinn, Julianne D. ; Reed, Patrick M. ; Keller, Klaus</creator><creatorcontrib>Quinn, Julianne D. ; Reed, Patrick M. ; Keller, Klaus</creatorcontrib><description>Managing socio-ecological systems is a challenge wrought by competing societal objectives, deep uncertainties, and potentially irreversible tipping points. A classic, didactic example is the shallow lake problem in which a hypothetical town situated on a lake must develop pollution control strategies to maximize its economic benefits while minimizing the probability of the lake crossing a critical phosphorus (P) threshold, above which it irreversibly transitions into a eutrophic state. Here, we explore the use of direct policy search (DPS) to design robust pollution control rules for the town that account for deeply uncertain system characteristics and conflicting objectives. The closed loop control formulation of DPS improves the quality and robustness of key management tradeoffs, while dramatically reducing the computational complexity of solving the multi-objective pollution control problem relative to open loop control strategies. These insights suggest DPS is a promising tool for managing socio-ecological systems with deeply uncertain tipping points.
•Managing socio-ecological systems with tipping points is a challenging multi-objective problem.•Direct policy search (DPS) is a computationally efficient method for solving such problems.•Compared to open loop control DPS finds policies that are more robust to deep uncertainties.</description><identifier>ISSN: 1364-8152</identifier><identifier>EISSN: 1873-6726</identifier><identifier>DOI: 10.1016/j.envsoft.2017.02.017</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Closed loop systems ; Computational mathematics ; Computer applications ; Deep uncertainty ; Direct policy search ; Ecology ; Environmental policy ; Eutrophic environments ; Eutrophication ; Lakes ; Multi-objective decision making ; Multiple objective analysis ; Phosphorus ; Pollution ; Pollution control ; Probability ; Robust control ; Robustness ; Robustness (mathematics) ; Social-ecological systems ; Socio-ecological management ; Studies ; Tipping points</subject><ispartof>Environmental modelling & software : with environment data news, 2017-06, Vol.92, p.125-141</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jun 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-f34104243b221acde224fc6eda3037aa20ed7f1dc4db0c93d75cde39d401d3d63</citedby><cites>FETCH-LOGICAL-c412t-f34104243b221acde224fc6eda3037aa20ed7f1dc4db0c93d75cde39d401d3d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envsoft.2017.02.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Quinn, Julianne D.</creatorcontrib><creatorcontrib>Reed, Patrick M.</creatorcontrib><creatorcontrib>Keller, Klaus</creatorcontrib><title>Direct policy search for robust multi-objective management of deeply uncertain socio-ecological tipping points</title><title>Environmental modelling & software : with environment data news</title><description>Managing socio-ecological systems is a challenge wrought by competing societal objectives, deep uncertainties, and potentially irreversible tipping points. A classic, didactic example is the shallow lake problem in which a hypothetical town situated on a lake must develop pollution control strategies to maximize its economic benefits while minimizing the probability of the lake crossing a critical phosphorus (P) threshold, above which it irreversibly transitions into a eutrophic state. Here, we explore the use of direct policy search (DPS) to design robust pollution control rules for the town that account for deeply uncertain system characteristics and conflicting objectives. The closed loop control formulation of DPS improves the quality and robustness of key management tradeoffs, while dramatically reducing the computational complexity of solving the multi-objective pollution control problem relative to open loop control strategies. These insights suggest DPS is a promising tool for managing socio-ecological systems with deeply uncertain tipping points.
•Managing socio-ecological systems with tipping points is a challenging multi-objective problem.•Direct policy search (DPS) is a computationally efficient method for solving such problems.•Compared to open loop control DPS finds policies that are more robust to deep uncertainties.</description><subject>Closed loop systems</subject><subject>Computational mathematics</subject><subject>Computer applications</subject><subject>Deep uncertainty</subject><subject>Direct policy search</subject><subject>Ecology</subject><subject>Environmental policy</subject><subject>Eutrophic environments</subject><subject>Eutrophication</subject><subject>Lakes</subject><subject>Multi-objective decision making</subject><subject>Multiple objective analysis</subject><subject>Phosphorus</subject><subject>Pollution</subject><subject>Pollution control</subject><subject>Probability</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Social-ecological systems</subject><subject>Socio-ecological management</subject><subject>Studies</subject><subject>Tipping points</subject><issn>1364-8152</issn><issn>1873-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkUtPwzAQhC0EEqXwE5AscU7wq0l7Qqg8pUpc4Gw59qY4SuxgO5X67zG0dzjNHr7Z1c4gdE1JSQmtbrsS3C76NpWM0LokrMxygmZ0WfOiqll1mmdeiWJJF-wcXcTYEULyLGbIPdgAOuHR91bvcQQV9CdufcDBN1NMeJj6ZAvfdJmyO8CDcmoLA7iEfYsNwNjv8eQ0hKSsw9Fr6wvQvvdbq1WPkx1H67b5gHUpXqKzVvURro46Rx9Pj-_rl2Lz9vy6vt8UWlCWipYLSgQTvGGMKm2AMdHqCozihNdKMQKmbqnRwjREr7ipFxniKyMINdxUfI5uDnvH4L8miEl2fgoun5SMCM5zGuw_FGerTC0OlA4-xgCtHIMdVNhLSuRPAbKTxwLkTwGSMJkl--4OPsiP7iwEGbWFnJT5jVwab__Y8A20gpOa</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Quinn, Julianne D.</creator><creator>Reed, Patrick M.</creator><creator>Keller, Klaus</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>SOI</scope></search><sort><creationdate>20170601</creationdate><title>Direct policy search for robust multi-objective management of deeply uncertain socio-ecological tipping points</title><author>Quinn, Julianne D. ; Reed, Patrick M. ; Keller, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-f34104243b221acde224fc6eda3037aa20ed7f1dc4db0c93d75cde39d401d3d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Closed loop systems</topic><topic>Computational mathematics</topic><topic>Computer applications</topic><topic>Deep uncertainty</topic><topic>Direct policy search</topic><topic>Ecology</topic><topic>Environmental policy</topic><topic>Eutrophic environments</topic><topic>Eutrophication</topic><topic>Lakes</topic><topic>Multi-objective decision making</topic><topic>Multiple objective analysis</topic><topic>Phosphorus</topic><topic>Pollution</topic><topic>Pollution control</topic><topic>Probability</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Social-ecological systems</topic><topic>Socio-ecological management</topic><topic>Studies</topic><topic>Tipping points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quinn, Julianne D.</creatorcontrib><creatorcontrib>Reed, Patrick M.</creatorcontrib><creatorcontrib>Keller, Klaus</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental modelling & software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quinn, Julianne D.</au><au>Reed, Patrick M.</au><au>Keller, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct policy search for robust multi-objective management of deeply uncertain socio-ecological tipping points</atitle><jtitle>Environmental modelling & software : with environment data news</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>92</volume><spage>125</spage><epage>141</epage><pages>125-141</pages><issn>1364-8152</issn><eissn>1873-6726</eissn><abstract>Managing socio-ecological systems is a challenge wrought by competing societal objectives, deep uncertainties, and potentially irreversible tipping points. A classic, didactic example is the shallow lake problem in which a hypothetical town situated on a lake must develop pollution control strategies to maximize its economic benefits while minimizing the probability of the lake crossing a critical phosphorus (P) threshold, above which it irreversibly transitions into a eutrophic state. Here, we explore the use of direct policy search (DPS) to design robust pollution control rules for the town that account for deeply uncertain system characteristics and conflicting objectives. The closed loop control formulation of DPS improves the quality and robustness of key management tradeoffs, while dramatically reducing the computational complexity of solving the multi-objective pollution control problem relative to open loop control strategies. These insights suggest DPS is a promising tool for managing socio-ecological systems with deeply uncertain tipping points.
•Managing socio-ecological systems with tipping points is a challenging multi-objective problem.•Direct policy search (DPS) is a computationally efficient method for solving such problems.•Compared to open loop control DPS finds policies that are more robust to deep uncertainties.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2017.02.017</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-8152 |
ispartof | Environmental modelling & software : with environment data news, 2017-06, Vol.92, p.125-141 |
issn | 1364-8152 1873-6726 |
language | eng |
recordid | cdi_proquest_journals_2043336426 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Closed loop systems Computational mathematics Computer applications Deep uncertainty Direct policy search Ecology Environmental policy Eutrophic environments Eutrophication Lakes Multi-objective decision making Multiple objective analysis Phosphorus Pollution Pollution control Probability Robust control Robustness Robustness (mathematics) Social-ecological systems Socio-ecological management Studies Tipping points |
title | Direct policy search for robust multi-objective management of deeply uncertain socio-ecological tipping points |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A19%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20policy%20search%20for%20robust%20multi-objective%20management%20of%20deeply%20uncertain%20socio-ecological%20tipping%20points&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Quinn,%20Julianne%20D.&rft.date=2017-06-01&rft.volume=92&rft.spage=125&rft.epage=141&rft.pages=125-141&rft.issn=1364-8152&rft.eissn=1873-6726&rft_id=info:doi/10.1016/j.envsoft.2017.02.017&rft_dat=%3Cproquest_cross%3E2043336329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2043336329&rft_id=info:pmid/&rft_els_id=S1364815216302250&rfr_iscdi=true |