Availability of inspected systems subject to shocks – A matrix algorithmic approach

We examine the limiting average availability of a maintained system that deteriorates due to random shock process and as a response to its usage (wear out). System’s failures are not self-announcing, hence, failures must be detected via inspection. We consider randomly occurring shocks that arrive a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2009-02, Vol.193 (1), p.168-183
Hauptverfasser: Frostig, Esther, Kenzin, Moshe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 1
container_start_page 168
container_title European journal of operational research
container_volume 193
creator Frostig, Esther
Kenzin, Moshe
description We examine the limiting average availability of a maintained system that deteriorates due to random shock process and as a response to its usage (wear out). System’s failures are not self-announcing, hence, failures must be detected via inspection. We consider randomly occurring shocks that arrive according to a Poisson process and cumulatively damage the system. Two models are considered: in Model 1 the shock and wear out processes are independent of the external environment and in Model 2, the shocks arrival rate, the shock magnitudes and the wear out rate are governed by a random environment which evolves as a Markov process. We obtain the system’s availability for both models.
doi_str_mv 10.1016/j.ejor.2007.10.052
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204322130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221707010697</els_id><sourcerecordid>1563371131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-6b11866a66e5b978462e4677718e8336b81ab222968767062b35afe9350347b33</originalsourceid><addsrcrecordid>eNp9Uctq3DAUFaWFTJP-QFai0KUnetiSDN0MoWlLA90kayFrrjty7ZEraYbMrv_QP-yX9JoJWVZwdeFwzn2cS8g1Z2vOuLoZ1jDEtBaMaQTWrBGvyIobLSplFHtNVkxqXQnB9QV5m_PAGOMNb1bkcXN0YXRdGEM50djTsM8z-AJbmk-5wJRpPnQDIrREmnfR_8z07-8_dEMnV1J4om78EVMouyl46uY5Red3V-RN78YM757zJXm8-_Rw-6W6__756-3mvvK1bkulOs6NUk4paLpWm1oJqJXWmhswUqrOcNcJIVpltNJMiU42rodWNkzWupPykrw_18W2vw6Qix3iIe2xpRWslrivZEgSZ5JPMecEvZ1TmFw6Wc7s4p4d7OKeXdxbMHQPRd_OogRox4sC8CEVsj1a6Xgr8T9hoLTFFBYQY16yMpYbaXdlwmofnud02buxT27vQ36pKrjA9XSDvI9nHqBpxwDJZh9g72EbEp7AbmP439D_AGidnh8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204322130</pqid></control><display><type>article</type><title>Availability of inspected systems subject to shocks – A matrix algorithmic approach</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Frostig, Esther ; Kenzin, Moshe</creator><creatorcontrib>Frostig, Esther ; Kenzin, Moshe</creatorcontrib><description>We examine the limiting average availability of a maintained system that deteriorates due to random shock process and as a response to its usage (wear out). System’s failures are not self-announcing, hence, failures must be detected via inspection. We consider randomly occurring shocks that arrive according to a Poisson process and cumulatively damage the system. Two models are considered: in Model 1 the shock and wear out processes are independent of the external environment and in Model 2, the shocks arrival rate, the shock magnitudes and the wear out rate are governed by a random environment which evolves as a Markov process. We obtain the system’s availability for both models.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2007.10.052</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Applied sciences ; Compound poisson ; Exact sciences and technology ; Markov additive process ; Markov analysis ; Martingale ; Matrix ; Operational research and scientific management ; Operational research. Management science ; Phase-type distributions ; Poisson distribution ; Reliability ; Reliability Compound poisson Markov additive process Martingale Phase-type distributions ; Reliability theory. Replacement problems ; Studies</subject><ispartof>European journal of operational research, 2009-02, Vol.193 (1), p.168-183</ispartof><rights>2007</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Feb 16, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-6b11866a66e5b978462e4677718e8336b81ab222968767062b35afe9350347b33</citedby><cites>FETCH-LOGICAL-c479t-6b11866a66e5b978462e4677718e8336b81ab222968767062b35afe9350347b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377221707010697$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21267075$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a193_3ay_3a2009_3ai_3a1_3ap_3a168-183.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Frostig, Esther</creatorcontrib><creatorcontrib>Kenzin, Moshe</creatorcontrib><title>Availability of inspected systems subject to shocks – A matrix algorithmic approach</title><title>European journal of operational research</title><description>We examine the limiting average availability of a maintained system that deteriorates due to random shock process and as a response to its usage (wear out). System’s failures are not self-announcing, hence, failures must be detected via inspection. We consider randomly occurring shocks that arrive according to a Poisson process and cumulatively damage the system. Two models are considered: in Model 1 the shock and wear out processes are independent of the external environment and in Model 2, the shocks arrival rate, the shock magnitudes and the wear out rate are governed by a random environment which evolves as a Markov process. We obtain the system’s availability for both models.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Compound poisson</subject><subject>Exact sciences and technology</subject><subject>Markov additive process</subject><subject>Markov analysis</subject><subject>Martingale</subject><subject>Matrix</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Phase-type distributions</subject><subject>Poisson distribution</subject><subject>Reliability</subject><subject>Reliability Compound poisson Markov additive process Martingale Phase-type distributions</subject><subject>Reliability theory. Replacement problems</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9Uctq3DAUFaWFTJP-QFai0KUnetiSDN0MoWlLA90kayFrrjty7ZEraYbMrv_QP-yX9JoJWVZwdeFwzn2cS8g1Z2vOuLoZ1jDEtBaMaQTWrBGvyIobLSplFHtNVkxqXQnB9QV5m_PAGOMNb1bkcXN0YXRdGEM50djTsM8z-AJbmk-5wJRpPnQDIrREmnfR_8z07-8_dEMnV1J4om78EVMouyl46uY5Red3V-RN78YM757zJXm8-_Rw-6W6__756-3mvvK1bkulOs6NUk4paLpWm1oJqJXWmhswUqrOcNcJIVpltNJMiU42rodWNkzWupPykrw_18W2vw6Qix3iIe2xpRWslrivZEgSZ5JPMecEvZ1TmFw6Wc7s4p4d7OKeXdxbMHQPRd_OogRox4sC8CEVsj1a6Xgr8T9hoLTFFBYQY16yMpYbaXdlwmofnud02buxT27vQ36pKrjA9XSDvI9nHqBpxwDJZh9g72EbEp7AbmP439D_AGidnh8</recordid><startdate>20090216</startdate><enddate>20090216</enddate><creator>Frostig, Esther</creator><creator>Kenzin, Moshe</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090216</creationdate><title>Availability of inspected systems subject to shocks – A matrix algorithmic approach</title><author>Frostig, Esther ; Kenzin, Moshe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-6b11866a66e5b978462e4677718e8336b81ab222968767062b35afe9350347b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Compound poisson</topic><topic>Exact sciences and technology</topic><topic>Markov additive process</topic><topic>Markov analysis</topic><topic>Martingale</topic><topic>Matrix</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Phase-type distributions</topic><topic>Poisson distribution</topic><topic>Reliability</topic><topic>Reliability Compound poisson Markov additive process Martingale Phase-type distributions</topic><topic>Reliability theory. Replacement problems</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frostig, Esther</creatorcontrib><creatorcontrib>Kenzin, Moshe</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frostig, Esther</au><au>Kenzin, Moshe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Availability of inspected systems subject to shocks – A matrix algorithmic approach</atitle><jtitle>European journal of operational research</jtitle><date>2009-02-16</date><risdate>2009</risdate><volume>193</volume><issue>1</issue><spage>168</spage><epage>183</epage><pages>168-183</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>We examine the limiting average availability of a maintained system that deteriorates due to random shock process and as a response to its usage (wear out). System’s failures are not self-announcing, hence, failures must be detected via inspection. We consider randomly occurring shocks that arrive according to a Poisson process and cumulatively damage the system. Two models are considered: in Model 1 the shock and wear out processes are independent of the external environment and in Model 2, the shocks arrival rate, the shock magnitudes and the wear out rate are governed by a random environment which evolves as a Markov process. We obtain the system’s availability for both models.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2007.10.052</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2009-02, Vol.193 (1), p.168-183
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204322130
source RePEc; Elsevier ScienceDirect Journals
subjects Algorithms
Applied sciences
Compound poisson
Exact sciences and technology
Markov additive process
Markov analysis
Martingale
Matrix
Operational research and scientific management
Operational research. Management science
Phase-type distributions
Poisson distribution
Reliability
Reliability Compound poisson Markov additive process Martingale Phase-type distributions
Reliability theory. Replacement problems
Studies
title Availability of inspected systems subject to shocks – A matrix algorithmic approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Availability%20of%20inspected%20systems%20subject%20to%20shocks%20%E2%80%93%20A%20matrix%20algorithmic%20approach&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Frostig,%20Esther&rft.date=2009-02-16&rft.volume=193&rft.issue=1&rft.spage=168&rft.epage=183&rft.pages=168-183&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2007.10.052&rft_dat=%3Cproquest_cross%3E1563371131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204322130&rft_id=info:pmid/&rft_els_id=S0377221707010697&rfr_iscdi=true