Availability of inspected systems subject to shocks – A matrix algorithmic approach
We examine the limiting average availability of a maintained system that deteriorates due to random shock process and as a response to its usage (wear out). System’s failures are not self-announcing, hence, failures must be detected via inspection. We consider randomly occurring shocks that arrive a...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 2009-02, Vol.193 (1), p.168-183 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183 |
---|---|
container_issue | 1 |
container_start_page | 168 |
container_title | European journal of operational research |
container_volume | 193 |
creator | Frostig, Esther Kenzin, Moshe |
description | We examine the limiting average availability of a maintained system that deteriorates due to random shock process and as a response to its usage (wear out). System’s failures are not self-announcing, hence, failures must be detected via inspection. We consider randomly occurring shocks that arrive according to a Poisson process and cumulatively damage the system. Two models are considered: in Model 1 the shock and wear out processes are independent of the external environment and in Model 2, the shocks arrival rate, the shock magnitudes and the wear out rate are governed by a random environment which evolves as a Markov process. We obtain the system’s availability for both models. |
doi_str_mv | 10.1016/j.ejor.2007.10.052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204322130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221707010697</els_id><sourcerecordid>1563371131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-6b11866a66e5b978462e4677718e8336b81ab222968767062b35afe9350347b33</originalsourceid><addsrcrecordid>eNp9Uctq3DAUFaWFTJP-QFai0KUnetiSDN0MoWlLA90kayFrrjty7ZEraYbMrv_QP-yX9JoJWVZwdeFwzn2cS8g1Z2vOuLoZ1jDEtBaMaQTWrBGvyIobLSplFHtNVkxqXQnB9QV5m_PAGOMNb1bkcXN0YXRdGEM50djTsM8z-AJbmk-5wJRpPnQDIrREmnfR_8z07-8_dEMnV1J4om78EVMouyl46uY5Red3V-RN78YM757zJXm8-_Rw-6W6__756-3mvvK1bkulOs6NUk4paLpWm1oJqJXWmhswUqrOcNcJIVpltNJMiU42rodWNkzWupPykrw_18W2vw6Qix3iIe2xpRWslrivZEgSZ5JPMecEvZ1TmFw6Wc7s4p4d7OKeXdxbMHQPRd_OogRox4sC8CEVsj1a6Xgr8T9hoLTFFBYQY16yMpYbaXdlwmofnud02buxT27vQ36pKrjA9XSDvI9nHqBpxwDJZh9g72EbEp7AbmP439D_AGidnh8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204322130</pqid></control><display><type>article</type><title>Availability of inspected systems subject to shocks – A matrix algorithmic approach</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Frostig, Esther ; Kenzin, Moshe</creator><creatorcontrib>Frostig, Esther ; Kenzin, Moshe</creatorcontrib><description>We examine the limiting average availability of a maintained system that deteriorates due to random shock process and as a response to its usage (wear out). System’s failures are not self-announcing, hence, failures must be detected via inspection. We consider randomly occurring shocks that arrive according to a Poisson process and cumulatively damage the system. Two models are considered: in Model 1 the shock and wear out processes are independent of the external environment and in Model 2, the shocks arrival rate, the shock magnitudes and the wear out rate are governed by a random environment which evolves as a Markov process. We obtain the system’s availability for both models.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2007.10.052</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Applied sciences ; Compound poisson ; Exact sciences and technology ; Markov additive process ; Markov analysis ; Martingale ; Matrix ; Operational research and scientific management ; Operational research. Management science ; Phase-type distributions ; Poisson distribution ; Reliability ; Reliability Compound poisson Markov additive process Martingale Phase-type distributions ; Reliability theory. Replacement problems ; Studies</subject><ispartof>European journal of operational research, 2009-02, Vol.193 (1), p.168-183</ispartof><rights>2007</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Feb 16, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-6b11866a66e5b978462e4677718e8336b81ab222968767062b35afe9350347b33</citedby><cites>FETCH-LOGICAL-c479t-6b11866a66e5b978462e4677718e8336b81ab222968767062b35afe9350347b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377221707010697$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21267075$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a193_3ay_3a2009_3ai_3a1_3ap_3a168-183.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Frostig, Esther</creatorcontrib><creatorcontrib>Kenzin, Moshe</creatorcontrib><title>Availability of inspected systems subject to shocks – A matrix algorithmic approach</title><title>European journal of operational research</title><description>We examine the limiting average availability of a maintained system that deteriorates due to random shock process and as a response to its usage (wear out). System’s failures are not self-announcing, hence, failures must be detected via inspection. We consider randomly occurring shocks that arrive according to a Poisson process and cumulatively damage the system. Two models are considered: in Model 1 the shock and wear out processes are independent of the external environment and in Model 2, the shocks arrival rate, the shock magnitudes and the wear out rate are governed by a random environment which evolves as a Markov process. We obtain the system’s availability for both models.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Compound poisson</subject><subject>Exact sciences and technology</subject><subject>Markov additive process</subject><subject>Markov analysis</subject><subject>Martingale</subject><subject>Matrix</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Phase-type distributions</subject><subject>Poisson distribution</subject><subject>Reliability</subject><subject>Reliability Compound poisson Markov additive process Martingale Phase-type distributions</subject><subject>Reliability theory. Replacement problems</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9Uctq3DAUFaWFTJP-QFai0KUnetiSDN0MoWlLA90kayFrrjty7ZEraYbMrv_QP-yX9JoJWVZwdeFwzn2cS8g1Z2vOuLoZ1jDEtBaMaQTWrBGvyIobLSplFHtNVkxqXQnB9QV5m_PAGOMNb1bkcXN0YXRdGEM50djTsM8z-AJbmk-5wJRpPnQDIrREmnfR_8z07-8_dEMnV1J4om78EVMouyl46uY5Red3V-RN78YM757zJXm8-_Rw-6W6__756-3mvvK1bkulOs6NUk4paLpWm1oJqJXWmhswUqrOcNcJIVpltNJMiU42rodWNkzWupPykrw_18W2vw6Qix3iIe2xpRWslrivZEgSZ5JPMecEvZ1TmFw6Wc7s4p4d7OKeXdxbMHQPRd_OogRox4sC8CEVsj1a6Xgr8T9hoLTFFBYQY16yMpYbaXdlwmofnud02buxT27vQ36pKrjA9XSDvI9nHqBpxwDJZh9g72EbEp7AbmP439D_AGidnh8</recordid><startdate>20090216</startdate><enddate>20090216</enddate><creator>Frostig, Esther</creator><creator>Kenzin, Moshe</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090216</creationdate><title>Availability of inspected systems subject to shocks – A matrix algorithmic approach</title><author>Frostig, Esther ; Kenzin, Moshe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-6b11866a66e5b978462e4677718e8336b81ab222968767062b35afe9350347b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Compound poisson</topic><topic>Exact sciences and technology</topic><topic>Markov additive process</topic><topic>Markov analysis</topic><topic>Martingale</topic><topic>Matrix</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Phase-type distributions</topic><topic>Poisson distribution</topic><topic>Reliability</topic><topic>Reliability Compound poisson Markov additive process Martingale Phase-type distributions</topic><topic>Reliability theory. Replacement problems</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frostig, Esther</creatorcontrib><creatorcontrib>Kenzin, Moshe</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frostig, Esther</au><au>Kenzin, Moshe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Availability of inspected systems subject to shocks – A matrix algorithmic approach</atitle><jtitle>European journal of operational research</jtitle><date>2009-02-16</date><risdate>2009</risdate><volume>193</volume><issue>1</issue><spage>168</spage><epage>183</epage><pages>168-183</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>We examine the limiting average availability of a maintained system that deteriorates due to random shock process and as a response to its usage (wear out). System’s failures are not self-announcing, hence, failures must be detected via inspection. We consider randomly occurring shocks that arrive according to a Poisson process and cumulatively damage the system. Two models are considered: in Model 1 the shock and wear out processes are independent of the external environment and in Model 2, the shocks arrival rate, the shock magnitudes and the wear out rate are governed by a random environment which evolves as a Markov process. We obtain the system’s availability for both models.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2007.10.052</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 2009-02, Vol.193 (1), p.168-183 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_journals_204322130 |
source | RePEc; Elsevier ScienceDirect Journals |
subjects | Algorithms Applied sciences Compound poisson Exact sciences and technology Markov additive process Markov analysis Martingale Matrix Operational research and scientific management Operational research. Management science Phase-type distributions Poisson distribution Reliability Reliability Compound poisson Markov additive process Martingale Phase-type distributions Reliability theory. Replacement problems Studies |
title | Availability of inspected systems subject to shocks – A matrix algorithmic approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Availability%20of%20inspected%20systems%20subject%20to%20shocks%20%E2%80%93%20A%20matrix%20algorithmic%20approach&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Frostig,%20Esther&rft.date=2009-02-16&rft.volume=193&rft.issue=1&rft.spage=168&rft.epage=183&rft.pages=168-183&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2007.10.052&rft_dat=%3Cproquest_cross%3E1563371131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204322130&rft_id=info:pmid/&rft_els_id=S0377221707010697&rfr_iscdi=true |