A complexity measure for data flow models

For common data flow schemes, the number of copies of tokens made during a computation is demonstrated to be a Blum (1967) complexity measure. Results from abstract complexity theory then hold for the copy measure, suggesting, for example, that any implementation of a data flow processor will be lim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Computer & Information Sciences 1985-04, Vol.14 (2), p.107-122
Hauptverfasser: MOTTELER, H. E, SMITH, C. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122
container_issue 2
container_start_page 107
container_title International Journal of Computer & Information Sciences
container_volume 14
creator MOTTELER, H. E
SMITH, C. H
description For common data flow schemes, the number of copies of tokens made during a computation is demonstrated to be a Blum (1967) complexity measure. Results from abstract complexity theory then hold for the copy measure, suggesting, for example, that any implementation of a data flow processor will be limited by its ability to copy tokens. The copy measure is a natural measure of complexity for data flow calculations, and is distinct from the usual time or space measures. The result is generalized to a broader class of data flow schemas, including those with an apply operator. An example is also presented of a data flow scheme that makes no copies either by explicit copy nodes or by operators that release more than one token at a time. Calculation in this example proceeds by the repeated modification of a single token.
doi_str_mv 10.1007/BF00996925
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204320425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1121099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-c07ce8cf2be4e8a48e218a8d2e49bc43d452f2b94e6ba3644e64a3044f9fe9233</originalsourceid><addsrcrecordid>eNpdkFtLAzEQhYMoWKsv_oJFRFBYzT2bx1q8QcEXfQ5pdgJbsk1NdtH-eyMtCj4MB2a-ORwOQucE3xKM1d39I8ZaS03FAZoQoVitJMeHaFLWpFaYyWN0kvMKY4aVEhN0Patc7DcBvrphW_Vg85ig8jFVrR1s5UP8rPrYQsin6MjbkOFsr1P0_vjwNn-uF69PL_PZonZUqaF2WDlonKdL4NBY3gAljW1aClwvHWctF7QcNQe5tEzyotwyzLnXHjRlbIqudr6bFD9GyIPpu-wgBLuGOGbDBCGcC1LAi3_gKo5pXbIZijkrQ0WBbnaQSzHnBN5sUtfbtDUEm5_KzF9lBb7cO9rsbPDJrl2Xfz-ahkolJPsGpsNobg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204320425</pqid></control><display><type>article</type><title>A complexity measure for data flow models</title><source>SpringerNature Journals</source><creator>MOTTELER, H. E ; SMITH, C. H</creator><creatorcontrib>MOTTELER, H. E ; SMITH, C. H</creatorcontrib><description>For common data flow schemes, the number of copies of tokens made during a computation is demonstrated to be a Blum (1967) complexity measure. Results from abstract complexity theory then hold for the copy measure, suggesting, for example, that any implementation of a data flow processor will be limited by its ability to copy tokens. The copy measure is a natural measure of complexity for data flow calculations, and is distinct from the usual time or space measures. The result is generalized to a broader class of data flow schemas, including those with an apply operator. An example is also presented of a data flow scheme that makes no copies either by explicit copy nodes or by operators that release more than one token at a time. Calculation in this example proceeds by the repeated modification of a single token.</description><identifier>ISSN: 0091-7036</identifier><identifier>ISSN: 0885-7458</identifier><identifier>EISSN: 1573-7640</identifier><identifier>DOI: 10.1007/BF00996925</identifier><identifier>CODEN: IJCIAH</identifier><language>eng</language><publisher>New York, NY: Plenum</publisher><subject>Applied sciences ; Computer programming ; Computer science; control theory; systems ; Exact sciences and technology ; Miscellaneous ; Software ; Theory</subject><ispartof>International Journal of Computer &amp; Information Sciences, 1985-04, Vol.14 (2), p.107-122</ispartof><rights>1986 INIST-CNRS</rights><rights>Copyright Plenum Publishing Corporation Apr 1985</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-c07ce8cf2be4e8a48e218a8d2e49bc43d452f2b94e6ba3644e64a3044f9fe9233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8826756$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MOTTELER, H. E</creatorcontrib><creatorcontrib>SMITH, C. H</creatorcontrib><title>A complexity measure for data flow models</title><title>International Journal of Computer &amp; Information Sciences</title><description>For common data flow schemes, the number of copies of tokens made during a computation is demonstrated to be a Blum (1967) complexity measure. Results from abstract complexity theory then hold for the copy measure, suggesting, for example, that any implementation of a data flow processor will be limited by its ability to copy tokens. The copy measure is a natural measure of complexity for data flow calculations, and is distinct from the usual time or space measures. The result is generalized to a broader class of data flow schemas, including those with an apply operator. An example is also presented of a data flow scheme that makes no copies either by explicit copy nodes or by operators that release more than one token at a time. Calculation in this example proceeds by the repeated modification of a single token.</description><subject>Applied sciences</subject><subject>Computer programming</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Miscellaneous</subject><subject>Software</subject><subject>Theory</subject><issn>0091-7036</issn><issn>0885-7458</issn><issn>1573-7640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNpdkFtLAzEQhYMoWKsv_oJFRFBYzT2bx1q8QcEXfQ5pdgJbsk1NdtH-eyMtCj4MB2a-ORwOQucE3xKM1d39I8ZaS03FAZoQoVitJMeHaFLWpFaYyWN0kvMKY4aVEhN0Patc7DcBvrphW_Vg85ig8jFVrR1s5UP8rPrYQsin6MjbkOFsr1P0_vjwNn-uF69PL_PZonZUqaF2WDlonKdL4NBY3gAljW1aClwvHWctF7QcNQe5tEzyotwyzLnXHjRlbIqudr6bFD9GyIPpu-wgBLuGOGbDBCGcC1LAi3_gKo5pXbIZijkrQ0WBbnaQSzHnBN5sUtfbtDUEm5_KzF9lBb7cO9rsbPDJrl2Xfz-ahkolJPsGpsNobg</recordid><startdate>198504</startdate><enddate>198504</enddate><creator>MOTTELER, H. E</creator><creator>SMITH, C. H</creator><general>Plenum</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>198504</creationdate><title>A complexity measure for data flow models</title><author>MOTTELER, H. E ; SMITH, C. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-c07ce8cf2be4e8a48e218a8d2e49bc43d452f2b94e6ba3644e64a3044f9fe9233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Applied sciences</topic><topic>Computer programming</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Miscellaneous</topic><topic>Software</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MOTTELER, H. E</creatorcontrib><creatorcontrib>SMITH, C. H</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International Journal of Computer &amp; Information Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MOTTELER, H. E</au><au>SMITH, C. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A complexity measure for data flow models</atitle><jtitle>International Journal of Computer &amp; Information Sciences</jtitle><date>1985-04</date><risdate>1985</risdate><volume>14</volume><issue>2</issue><spage>107</spage><epage>122</epage><pages>107-122</pages><issn>0091-7036</issn><issn>0885-7458</issn><eissn>1573-7640</eissn><coden>IJCIAH</coden><abstract>For common data flow schemes, the number of copies of tokens made during a computation is demonstrated to be a Blum (1967) complexity measure. Results from abstract complexity theory then hold for the copy measure, suggesting, for example, that any implementation of a data flow processor will be limited by its ability to copy tokens. The copy measure is a natural measure of complexity for data flow calculations, and is distinct from the usual time or space measures. The result is generalized to a broader class of data flow schemas, including those with an apply operator. An example is also presented of a data flow scheme that makes no copies either by explicit copy nodes or by operators that release more than one token at a time. Calculation in this example proceeds by the repeated modification of a single token.</abstract><cop>New York, NY</cop><pub>Plenum</pub><doi>10.1007/BF00996925</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0091-7036
ispartof International Journal of Computer & Information Sciences, 1985-04, Vol.14 (2), p.107-122
issn 0091-7036
0885-7458
1573-7640
language eng
recordid cdi_proquest_journals_204320425
source SpringerNature Journals
subjects Applied sciences
Computer programming
Computer science
control theory
systems
Exact sciences and technology
Miscellaneous
Software
Theory
title A complexity measure for data flow models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A18%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20complexity%20measure%20for%20data%20flow%20models&rft.jtitle=International%20Journal%20of%20Computer%20&%20Information%20Sciences&rft.au=MOTTELER,%20H.%20E&rft.date=1985-04&rft.volume=14&rft.issue=2&rft.spage=107&rft.epage=122&rft.pages=107-122&rft.issn=0091-7036&rft.eissn=1573-7640&rft.coden=IJCIAH&rft_id=info:doi/10.1007/BF00996925&rft_dat=%3Cproquest_cross%3E1121099%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204320425&rft_id=info:pmid/&rfr_iscdi=true