Extensions of the Standard Quadratic Optimization Problem: Strong Duality, Optimality, Hidden Convexity and S-lemma
Many formulations of quadratic allocation problems, portfolio optimization problems, the maximum weight clique problem, among others, take the form as the well-known standard quadratic optimization problem, which consists in minimizing a homogeneous quadratic function on the usual simplex in the non...
Gespeichert in:
Veröffentlicht in: | Applied mathematics & optimization 2020-04, Vol.81 (2), p.383-408 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 408 |
---|---|
container_issue | 2 |
container_start_page | 383 |
container_title | Applied mathematics & optimization |
container_volume | 81 |
creator | Flores-Bazán, Fabián Cárcamo, Gabriel Caro, Stephanie |
description | Many formulations of quadratic allocation problems, portfolio optimization problems, the maximum weight clique problem, among others, take the form as the well-known standard quadratic optimization problem, which consists in minimizing a homogeneous quadratic function on the usual simplex in the non negative orthant. We propose to analyze the same problem when the simplex is substituted by a convex and compact base of any pointed, closed, convex cone (so, the cone of positive semidefinite matrices or the cone of copositive matrices are particular instances). Three main duals (for which a semi-infinite formulation of the primal problem is required) are associated, and we establish some characterizations of strong duality with respect to each of the three duals in terms of copositivity of the Hessian of the quadratic objective function on suitable cones. Such a problem reveals a hidden convexity and the validity of S-lemma. In case of bidimensional quadratic optimization problems, copositivity of the Hessian of the objective function is characterized, and the case when every local solution is global. |
doi_str_mv | 10.1007/s00245-018-9502-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2042950158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2042950158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-932a54e807307b64c060adf03b1538e22b3f22a609128ca227a2ffd94d44f17c3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3ArdGbx7zcSa1WKFSprkM6ydQpbVKTjLT-elNGcOXqHi7fOZd7ELqkcEMBitsAwERGgJakyoAROEIDKngSOeTHaABQZUTkND9FZyGsIOE85wMUxrtobGidDdg1OH4YPI_KauU1fu2U9iq2NZ5tY7tpv5N2Fr94t1ibzV0CvbNL_NCpdRv31z31qyet1sbikbNfZpc2OGXiOUm-jTpHJ41aB3PxO4fo_XH8NpqQ6ezpeXQ_JTWneSQVZyoTpoSCQ7HIRZ1eUboBvqAZLw1jC94wpnKoKCtrxVihWNPoSmghGlrUfIiu-tytd5-dCVGuXOdtOikZCJZ6olmZKNpTtXcheNPIrU9v-L2kIA_dyr5bmbqVh24lJA_rPSGxdmn8X_L_ph8Uy3wa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042950158</pqid></control><display><type>article</type><title>Extensions of the Standard Quadratic Optimization Problem: Strong Duality, Optimality, Hidden Convexity and S-lemma</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Flores-Bazán, Fabián ; Cárcamo, Gabriel ; Caro, Stephanie</creator><creatorcontrib>Flores-Bazán, Fabián ; Cárcamo, Gabriel ; Caro, Stephanie</creatorcontrib><description>Many formulations of quadratic allocation problems, portfolio optimization problems, the maximum weight clique problem, among others, take the form as the well-known standard quadratic optimization problem, which consists in minimizing a homogeneous quadratic function on the usual simplex in the non negative orthant. We propose to analyze the same problem when the simplex is substituted by a convex and compact base of any pointed, closed, convex cone (so, the cone of positive semidefinite matrices or the cone of copositive matrices are particular instances). Three main duals (for which a semi-infinite formulation of the primal problem is required) are associated, and we establish some characterizations of strong duality with respect to each of the three duals in terms of copositivity of the Hessian of the quadratic objective function on suitable cones. Such a problem reveals a hidden convexity and the validity of S-lemma. In case of bidimensional quadratic optimization problems, copositivity of the Hessian of the objective function is characterized, and the case when every local solution is global.</description><identifier>ISSN: 0095-4616</identifier><identifier>EISSN: 1432-0606</identifier><identifier>DOI: 10.1007/s00245-018-9502-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Cones ; Control ; Convexity ; Economic models ; Formulations ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Matrix methods ; Numerical and Computational Physics ; Optimization ; Quadratic equations ; Simulation ; Systems Theory ; Theoretical</subject><ispartof>Applied mathematics & optimization, 2020-04, Vol.81 (2), p.383-408</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-932a54e807307b64c060adf03b1538e22b3f22a609128ca227a2ffd94d44f17c3</citedby><cites>FETCH-LOGICAL-c316t-932a54e807307b64c060adf03b1538e22b3f22a609128ca227a2ffd94d44f17c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00245-018-9502-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00245-018-9502-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Flores-Bazán, Fabián</creatorcontrib><creatorcontrib>Cárcamo, Gabriel</creatorcontrib><creatorcontrib>Caro, Stephanie</creatorcontrib><title>Extensions of the Standard Quadratic Optimization Problem: Strong Duality, Optimality, Hidden Convexity and S-lemma</title><title>Applied mathematics & optimization</title><addtitle>Appl Math Optim</addtitle><description>Many formulations of quadratic allocation problems, portfolio optimization problems, the maximum weight clique problem, among others, take the form as the well-known standard quadratic optimization problem, which consists in minimizing a homogeneous quadratic function on the usual simplex in the non negative orthant. We propose to analyze the same problem when the simplex is substituted by a convex and compact base of any pointed, closed, convex cone (so, the cone of positive semidefinite matrices or the cone of copositive matrices are particular instances). Three main duals (for which a semi-infinite formulation of the primal problem is required) are associated, and we establish some characterizations of strong duality with respect to each of the three duals in terms of copositivity of the Hessian of the quadratic objective function on suitable cones. Such a problem reveals a hidden convexity and the validity of S-lemma. In case of bidimensional quadratic optimization problems, copositivity of the Hessian of the objective function is characterized, and the case when every local solution is global.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Cones</subject><subject>Control</subject><subject>Convexity</subject><subject>Economic models</subject><subject>Formulations</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix methods</subject><subject>Numerical and Computational Physics</subject><subject>Optimization</subject><subject>Quadratic equations</subject><subject>Simulation</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0095-4616</issn><issn>1432-0606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3ArdGbx7zcSa1WKFSprkM6ydQpbVKTjLT-elNGcOXqHi7fOZd7ELqkcEMBitsAwERGgJakyoAROEIDKngSOeTHaABQZUTkND9FZyGsIOE85wMUxrtobGidDdg1OH4YPI_KauU1fu2U9iq2NZ5tY7tpv5N2Fr94t1ibzV0CvbNL_NCpdRv31z31qyet1sbikbNfZpc2OGXiOUm-jTpHJ41aB3PxO4fo_XH8NpqQ6ezpeXQ_JTWneSQVZyoTpoSCQ7HIRZ1eUboBvqAZLw1jC94wpnKoKCtrxVihWNPoSmghGlrUfIiu-tytd5-dCVGuXOdtOikZCJZ6olmZKNpTtXcheNPIrU9v-L2kIA_dyr5bmbqVh24lJA_rPSGxdmn8X_L_ph8Uy3wa</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Flores-Bazán, Fabián</creator><creator>Cárcamo, Gabriel</creator><creator>Caro, Stephanie</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20200401</creationdate><title>Extensions of the Standard Quadratic Optimization Problem: Strong Duality, Optimality, Hidden Convexity and S-lemma</title><author>Flores-Bazán, Fabián ; Cárcamo, Gabriel ; Caro, Stephanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-932a54e807307b64c060adf03b1538e22b3f22a609128ca227a2ffd94d44f17c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Cones</topic><topic>Control</topic><topic>Convexity</topic><topic>Economic models</topic><topic>Formulations</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix methods</topic><topic>Numerical and Computational Physics</topic><topic>Optimization</topic><topic>Quadratic equations</topic><topic>Simulation</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flores-Bazán, Fabián</creatorcontrib><creatorcontrib>Cárcamo, Gabriel</creatorcontrib><creatorcontrib>Caro, Stephanie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied mathematics & optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flores-Bazán, Fabián</au><au>Cárcamo, Gabriel</au><au>Caro, Stephanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extensions of the Standard Quadratic Optimization Problem: Strong Duality, Optimality, Hidden Convexity and S-lemma</atitle><jtitle>Applied mathematics & optimization</jtitle><stitle>Appl Math Optim</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>81</volume><issue>2</issue><spage>383</spage><epage>408</epage><pages>383-408</pages><issn>0095-4616</issn><eissn>1432-0606</eissn><abstract>Many formulations of quadratic allocation problems, portfolio optimization problems, the maximum weight clique problem, among others, take the form as the well-known standard quadratic optimization problem, which consists in minimizing a homogeneous quadratic function on the usual simplex in the non negative orthant. We propose to analyze the same problem when the simplex is substituted by a convex and compact base of any pointed, closed, convex cone (so, the cone of positive semidefinite matrices or the cone of copositive matrices are particular instances). Three main duals (for which a semi-infinite formulation of the primal problem is required) are associated, and we establish some characterizations of strong duality with respect to each of the three duals in terms of copositivity of the Hessian of the quadratic objective function on suitable cones. Such a problem reveals a hidden convexity and the validity of S-lemma. In case of bidimensional quadratic optimization problems, copositivity of the Hessian of the objective function is characterized, and the case when every local solution is global.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00245-018-9502-0</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-4616 |
ispartof | Applied mathematics & optimization, 2020-04, Vol.81 (2), p.383-408 |
issn | 0095-4616 1432-0606 |
language | eng |
recordid | cdi_proquest_journals_2042950158 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Calculus of Variations and Optimal Control Optimization Cones Control Convexity Economic models Formulations Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical programming Mathematics Mathematics and Statistics Matrix methods Numerical and Computational Physics Optimization Quadratic equations Simulation Systems Theory Theoretical |
title | Extensions of the Standard Quadratic Optimization Problem: Strong Duality, Optimality, Hidden Convexity and S-lemma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A06%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extensions%20of%20the%20Standard%20Quadratic%20Optimization%20Problem:%20Strong%20Duality,%20Optimality,%20Hidden%20Convexity%20and%20S-lemma&rft.jtitle=Applied%20mathematics%20&%20optimization&rft.au=Flores-Baz%C3%A1n,%20Fabi%C3%A1n&rft.date=2020-04-01&rft.volume=81&rft.issue=2&rft.spage=383&rft.epage=408&rft.pages=383-408&rft.issn=0095-4616&rft.eissn=1432-0606&rft_id=info:doi/10.1007/s00245-018-9502-0&rft_dat=%3Cproquest_cross%3E2042950158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2042950158&rft_id=info:pmid/&rfr_iscdi=true |