Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation
Hyperthermia is a promising alternative modality for the conventional cancer treatments. Nanoparticle-mediated photothermal therapy (PTT) has been widely applied for hyperthermia cancer therapy by a near-infrared light irradiation. Some special nanoparticles can convert light energy into heat and de...
Gespeichert in:
Veröffentlicht in: | Lasers in medical science 2018-11, Vol.33 (8), p.1769-1779 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1779 |
---|---|
container_issue | 8 |
container_start_page | 1769 |
container_title | Lasers in medical science |
container_volume | 33 |
creator | Rahimi-Moghaddam, F. Azarpira, N. Sattarahmady, N. |
description | Hyperthermia is a promising alternative modality for the conventional cancer treatments. Nanoparticle-mediated photothermal therapy (PTT) has been widely applied for hyperthermia cancer therapy by a near-infrared light irradiation. Some special nanoparticles can convert light energy into heat and destroy the tumor cells. Inspired from the photothermal efficacy of the gold nanoparticles, here we synthesized, characterized, and applied novel photothermal polyethylene glycol-curcumin-gold nanoparticles (PEG-Cur-Au NPs) in cancer PTT. The effect of PEG-Cur-Au NPs upon irradiation by an 808-nm laser on C540 (B16/F10) cell line as well as implanted (bearing) melanoma tumor in inbred C57 mice was investigated. In vitro temperature increment, cell viability evaluation, and histological analyses were performed. The results showed a dose-dependent cytotoxicity of PEG-Cur-Au NPs toward C540 (B16/F10) cell line at concentrations ≥ 25 μg mL
−1
with an IC
50
value of 42.7 μg mL
−1
in dark (and with no toxicity for 10 μg mL
−1
). On the other hand, 808-nm laser irradiation alone (without using PEG-Cur-Au NPs) for 10 min induced killing effect on the C540 (B16/F10) cell line in a laser power-dependent manner at power density > 0.5 W cm
−2
(no toxicity for 0.5 W cm
−2
). However, PPT using PEG-Cur-Au NPs was tremendously observed after laser illumination. Even under laser irradiation at a power density of 0.5 W cm
−2
of PEG-Cur-Au NPs of concentrations |
doi_str_mv | 10.1007/s10103-018-2538-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2042476535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2042476535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-c3a7c69fae84755317a83b0aeec36aefd96c0bfd9ff0d9aa7e6c18f0d418325c3</originalsourceid><addsrcrecordid>eNp1UU1v1DAQtVARXQo_gAuy1LPBH0mc9FZVS0GqBAeQuFmzzmTrKrFT21mpf4NfXKdbyomDPTOe9-aN_Aj5IPgnwbn-nAQXXDEuWiZr1TLximxEpWrW8Or3Cdlw2bSs7aQ4JW9TuuNc6EaoN-RUdrorldyQP9sDjAtkFzwNAwXqwQcbpjkkl3F9-rG9ZnaJdpmcZ_sw9k-QGWJ2dsREIa0shMicHyJE7Ol8G3LItxgnGCns0ecLCp46Tw8ux1Dyvhy3dqfQ41g6B0zZ7Z_2eEdeDzAmfP8cz8ivL9ufV1_Zzffrb1eXN8wqLXO5QdumGwDbSte1EhpateOAaFUDOPRdY_muhGHgfQegsbGiLXklWiVrq87I-XHuHMP9UvTNXViiL5JG8kpWuqlVXVDiiLIxpBRxMHMsm8cHI7hZXTBHF0xxwawuGFE4H58nL7sJ-xfG328vAHkEpNLye4z_pP8_9RF10JWb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042476535</pqid></control><display><type>article</type><title>Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Rahimi-Moghaddam, F. ; Azarpira, N. ; Sattarahmady, N.</creator><creatorcontrib>Rahimi-Moghaddam, F. ; Azarpira, N. ; Sattarahmady, N.</creatorcontrib><description>Hyperthermia is a promising alternative modality for the conventional cancer treatments. Nanoparticle-mediated photothermal therapy (PTT) has been widely applied for hyperthermia cancer therapy by a near-infrared light irradiation. Some special nanoparticles can convert light energy into heat and destroy the tumor cells. Inspired from the photothermal efficacy of the gold nanoparticles, here we synthesized, characterized, and applied novel photothermal polyethylene glycol-curcumin-gold nanoparticles (PEG-Cur-Au NPs) in cancer PTT. The effect of PEG-Cur-Au NPs upon irradiation by an 808-nm laser on C540 (B16/F10) cell line as well as implanted (bearing) melanoma tumor in inbred C57 mice was investigated. In vitro temperature increment, cell viability evaluation, and histological analyses were performed. The results showed a dose-dependent cytotoxicity of PEG-Cur-Au NPs toward C540 (B16/F10) cell line at concentrations ≥ 25 μg mL
−1
with an IC
50
value of 42.7 μg mL
−1
in dark (and with no toxicity for 10 μg mL
−1
). On the other hand, 808-nm laser irradiation alone (without using PEG-Cur-Au NPs) for 10 min induced killing effect on the C540 (B16/F10) cell line in a laser power-dependent manner at power density > 0.5 W cm
−2
(no toxicity for 0.5 W cm
−2
). However, PPT using PEG-Cur-Au NPs was tremendously observed after laser illumination. Even under laser irradiation at a power density of 0.5 W cm
−2
of PEG-Cur-Au NPs of concentrations < 10 μg mL
−1
, PTT of the cells was substantial. Histological analyses and volume measurements of the induced tumors in the mice revealed an appropriate control of the tumors upon PTT by PEG-Cur-Au NPs. Combination of PEG-Cur-Au NP administration and 808-nm diode laser irradiation destroyed the melanoma cancer cells in the animal model.</description><identifier>ISSN: 0268-8921</identifier><identifier>EISSN: 1435-604X</identifier><identifier>DOI: 10.1007/s10103-018-2538-1</identifier><identifier>PMID: 29790012</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Animals ; Cancer ; Cell Line, Tumor ; Cell Survival - drug effects ; Curcumin ; Curcumin - pharmacology ; Cytotoxicity ; Dentistry ; Disease Models, Animal ; Evaluation ; Gold ; Gold - pharmacology ; Humans ; Hyperthermia ; Hyperthermia, Induced ; I.R. radiation ; Inbreeding ; Infrared radiation ; Infrared Rays ; Irradiation ; Lasers ; Light ; Light irradiation ; Male ; Medicine ; Medicine & Public Health ; Melanoma ; Melanoma, Experimental - pathology ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Mice ; Mice, Inbred C57BL ; Nanocomposites ; Nanocomposites - chemistry ; Nanocomposites - ultrastructure ; Nanoparticles ; Optical Devices ; Optics ; Original Article ; Photonics ; Phototherapy ; Polyethylene glycol ; Polyethylene Glycols - chemistry ; Quantum Optics ; Therapy ; Toxicity ; Tumor Burden ; Tumor cells ; Tumors</subject><ispartof>Lasers in medical science, 2018-11, Vol.33 (8), p.1769-1779</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Lasers in Medical Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-c3a7c69fae84755317a83b0aeec36aefd96c0bfd9ff0d9aa7e6c18f0d418325c3</citedby><cites>FETCH-LOGICAL-c372t-c3a7c69fae84755317a83b0aeec36aefd96c0bfd9ff0d9aa7e6c18f0d418325c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10103-018-2538-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10103-018-2538-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29790012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahimi-Moghaddam, F.</creatorcontrib><creatorcontrib>Azarpira, N.</creatorcontrib><creatorcontrib>Sattarahmady, N.</creatorcontrib><title>Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation</title><title>Lasers in medical science</title><addtitle>Lasers Med Sci</addtitle><addtitle>Lasers Med Sci</addtitle><description>Hyperthermia is a promising alternative modality for the conventional cancer treatments. Nanoparticle-mediated photothermal therapy (PTT) has been widely applied for hyperthermia cancer therapy by a near-infrared light irradiation. Some special nanoparticles can convert light energy into heat and destroy the tumor cells. Inspired from the photothermal efficacy of the gold nanoparticles, here we synthesized, characterized, and applied novel photothermal polyethylene glycol-curcumin-gold nanoparticles (PEG-Cur-Au NPs) in cancer PTT. The effect of PEG-Cur-Au NPs upon irradiation by an 808-nm laser on C540 (B16/F10) cell line as well as implanted (bearing) melanoma tumor in inbred C57 mice was investigated. In vitro temperature increment, cell viability evaluation, and histological analyses were performed. The results showed a dose-dependent cytotoxicity of PEG-Cur-Au NPs toward C540 (B16/F10) cell line at concentrations ≥ 25 μg mL
−1
with an IC
50
value of 42.7 μg mL
−1
in dark (and with no toxicity for 10 μg mL
−1
). On the other hand, 808-nm laser irradiation alone (without using PEG-Cur-Au NPs) for 10 min induced killing effect on the C540 (B16/F10) cell line in a laser power-dependent manner at power density > 0.5 W cm
−2
(no toxicity for 0.5 W cm
−2
). However, PPT using PEG-Cur-Au NPs was tremendously observed after laser illumination. Even under laser irradiation at a power density of 0.5 W cm
−2
of PEG-Cur-Au NPs of concentrations < 10 μg mL
−1
, PTT of the cells was substantial. Histological analyses and volume measurements of the induced tumors in the mice revealed an appropriate control of the tumors upon PTT by PEG-Cur-Au NPs. Combination of PEG-Cur-Au NP administration and 808-nm diode laser irradiation destroyed the melanoma cancer cells in the animal model.</description><subject>Animals</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Curcumin</subject><subject>Curcumin - pharmacology</subject><subject>Cytotoxicity</subject><subject>Dentistry</subject><subject>Disease Models, Animal</subject><subject>Evaluation</subject><subject>Gold</subject><subject>Gold - pharmacology</subject><subject>Humans</subject><subject>Hyperthermia</subject><subject>Hyperthermia, Induced</subject><subject>I.R. radiation</subject><subject>Inbreeding</subject><subject>Infrared radiation</subject><subject>Infrared Rays</subject><subject>Irradiation</subject><subject>Lasers</subject><subject>Light</subject><subject>Light irradiation</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Melanoma</subject><subject>Melanoma, Experimental - pathology</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>Nanocomposites - ultrastructure</subject><subject>Nanoparticles</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Original Article</subject><subject>Photonics</subject><subject>Phototherapy</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Quantum Optics</subject><subject>Therapy</subject><subject>Toxicity</subject><subject>Tumor Burden</subject><subject>Tumor cells</subject><subject>Tumors</subject><issn>0268-8921</issn><issn>1435-604X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UU1v1DAQtVARXQo_gAuy1LPBH0mc9FZVS0GqBAeQuFmzzmTrKrFT21mpf4NfXKdbyomDPTOe9-aN_Aj5IPgnwbn-nAQXXDEuWiZr1TLximxEpWrW8Or3Cdlw2bSs7aQ4JW9TuuNc6EaoN-RUdrorldyQP9sDjAtkFzwNAwXqwQcbpjkkl3F9-rG9ZnaJdpmcZ_sw9k-QGWJ2dsREIa0shMicHyJE7Ol8G3LItxgnGCns0ecLCp46Tw8ux1Dyvhy3dqfQ41g6B0zZ7Z_2eEdeDzAmfP8cz8ivL9ufV1_Zzffrb1eXN8wqLXO5QdumGwDbSte1EhpateOAaFUDOPRdY_muhGHgfQegsbGiLXklWiVrq87I-XHuHMP9UvTNXViiL5JG8kpWuqlVXVDiiLIxpBRxMHMsm8cHI7hZXTBHF0xxwawuGFE4H58nL7sJ-xfG328vAHkEpNLye4z_pP8_9RF10JWb</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Rahimi-Moghaddam, F.</creator><creator>Azarpira, N.</creator><creator>Sattarahmady, N.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20181101</creationdate><title>Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation</title><author>Rahimi-Moghaddam, F. ; Azarpira, N. ; Sattarahmady, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-c3a7c69fae84755317a83b0aeec36aefd96c0bfd9ff0d9aa7e6c18f0d418325c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Curcumin</topic><topic>Curcumin - pharmacology</topic><topic>Cytotoxicity</topic><topic>Dentistry</topic><topic>Disease Models, Animal</topic><topic>Evaluation</topic><topic>Gold</topic><topic>Gold - pharmacology</topic><topic>Humans</topic><topic>Hyperthermia</topic><topic>Hyperthermia, Induced</topic><topic>I.R. radiation</topic><topic>Inbreeding</topic><topic>Infrared radiation</topic><topic>Infrared Rays</topic><topic>Irradiation</topic><topic>Lasers</topic><topic>Light</topic><topic>Light irradiation</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Melanoma</topic><topic>Melanoma, Experimental - pathology</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>Nanocomposites - ultrastructure</topic><topic>Nanoparticles</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Original Article</topic><topic>Photonics</topic><topic>Phototherapy</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Quantum Optics</topic><topic>Therapy</topic><topic>Toxicity</topic><topic>Tumor Burden</topic><topic>Tumor cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahimi-Moghaddam, F.</creatorcontrib><creatorcontrib>Azarpira, N.</creatorcontrib><creatorcontrib>Sattarahmady, N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Lasers in medical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahimi-Moghaddam, F.</au><au>Azarpira, N.</au><au>Sattarahmady, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation</atitle><jtitle>Lasers in medical science</jtitle><stitle>Lasers Med Sci</stitle><addtitle>Lasers Med Sci</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>33</volume><issue>8</issue><spage>1769</spage><epage>1779</epage><pages>1769-1779</pages><issn>0268-8921</issn><eissn>1435-604X</eissn><abstract>Hyperthermia is a promising alternative modality for the conventional cancer treatments. Nanoparticle-mediated photothermal therapy (PTT) has been widely applied for hyperthermia cancer therapy by a near-infrared light irradiation. Some special nanoparticles can convert light energy into heat and destroy the tumor cells. Inspired from the photothermal efficacy of the gold nanoparticles, here we synthesized, characterized, and applied novel photothermal polyethylene glycol-curcumin-gold nanoparticles (PEG-Cur-Au NPs) in cancer PTT. The effect of PEG-Cur-Au NPs upon irradiation by an 808-nm laser on C540 (B16/F10) cell line as well as implanted (bearing) melanoma tumor in inbred C57 mice was investigated. In vitro temperature increment, cell viability evaluation, and histological analyses were performed. The results showed a dose-dependent cytotoxicity of PEG-Cur-Au NPs toward C540 (B16/F10) cell line at concentrations ≥ 25 μg mL
−1
with an IC
50
value of 42.7 μg mL
−1
in dark (and with no toxicity for 10 μg mL
−1
). On the other hand, 808-nm laser irradiation alone (without using PEG-Cur-Au NPs) for 10 min induced killing effect on the C540 (B16/F10) cell line in a laser power-dependent manner at power density > 0.5 W cm
−2
(no toxicity for 0.5 W cm
−2
). However, PPT using PEG-Cur-Au NPs was tremendously observed after laser illumination. Even under laser irradiation at a power density of 0.5 W cm
−2
of PEG-Cur-Au NPs of concentrations < 10 μg mL
−1
, PTT of the cells was substantial. Histological analyses and volume measurements of the induced tumors in the mice revealed an appropriate control of the tumors upon PTT by PEG-Cur-Au NPs. Combination of PEG-Cur-Au NP administration and 808-nm diode laser irradiation destroyed the melanoma cancer cells in the animal model.</abstract><cop>London</cop><pub>Springer London</pub><pmid>29790012</pmid><doi>10.1007/s10103-018-2538-1</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-8921 |
ispartof | Lasers in medical science, 2018-11, Vol.33 (8), p.1769-1779 |
issn | 0268-8921 1435-604X |
language | eng |
recordid | cdi_proquest_journals_2042476535 |
source | MEDLINE; SpringerNature Journals |
subjects | Animals Cancer Cell Line, Tumor Cell Survival - drug effects Curcumin Curcumin - pharmacology Cytotoxicity Dentistry Disease Models, Animal Evaluation Gold Gold - pharmacology Humans Hyperthermia Hyperthermia, Induced I.R. radiation Inbreeding Infrared radiation Infrared Rays Irradiation Lasers Light Light irradiation Male Medicine Medicine & Public Health Melanoma Melanoma, Experimental - pathology Metal Nanoparticles - chemistry Metal Nanoparticles - ultrastructure Mice Mice, Inbred C57BL Nanocomposites Nanocomposites - chemistry Nanocomposites - ultrastructure Nanoparticles Optical Devices Optics Original Article Photonics Phototherapy Polyethylene glycol Polyethylene Glycols - chemistry Quantum Optics Therapy Toxicity Tumor Burden Tumor cells Tumors |
title | Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20a%20nanocomposite%20of%20PEG-curcumin-gold%20nanoparticles%20as%20a%20near-infrared%20photothermal%20agent:%20an%20in%20vitro%20and%20animal%20model%20investigation&rft.jtitle=Lasers%20in%20medical%20science&rft.au=Rahimi-Moghaddam,%20F.&rft.date=2018-11-01&rft.volume=33&rft.issue=8&rft.spage=1769&rft.epage=1779&rft.pages=1769-1779&rft.issn=0268-8921&rft.eissn=1435-604X&rft_id=info:doi/10.1007/s10103-018-2538-1&rft_dat=%3Cproquest_cross%3E2042476535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2042476535&rft_id=info:pmid/29790012&rfr_iscdi=true |