Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation

Hyperthermia is a promising alternative modality for the conventional cancer treatments. Nanoparticle-mediated photothermal therapy (PTT) has been widely applied for hyperthermia cancer therapy by a near-infrared light irradiation. Some special nanoparticles can convert light energy into heat and de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lasers in medical science 2018-11, Vol.33 (8), p.1769-1779
Hauptverfasser: Rahimi-Moghaddam, F., Azarpira, N., Sattarahmady, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1779
container_issue 8
container_start_page 1769
container_title Lasers in medical science
container_volume 33
creator Rahimi-Moghaddam, F.
Azarpira, N.
Sattarahmady, N.
description Hyperthermia is a promising alternative modality for the conventional cancer treatments. Nanoparticle-mediated photothermal therapy (PTT) has been widely applied for hyperthermia cancer therapy by a near-infrared light irradiation. Some special nanoparticles can convert light energy into heat and destroy the tumor cells. Inspired from the photothermal efficacy of the gold nanoparticles, here we synthesized, characterized, and applied novel photothermal polyethylene glycol-curcumin-gold nanoparticles (PEG-Cur-Au NPs) in cancer PTT. The effect of PEG-Cur-Au NPs upon irradiation by an 808-nm laser on C540 (B16/F10) cell line as well as implanted (bearing) melanoma tumor in inbred C57 mice was investigated. In vitro temperature increment, cell viability evaluation, and histological analyses were performed. The results showed a dose-dependent cytotoxicity of PEG-Cur-Au NPs toward C540 (B16/F10) cell line at concentrations ≥ 25 μg mL −1 with an IC 50 value of 42.7 μg mL −1 in dark (and with no toxicity for 10 μg mL −1 ). On the other hand, 808-nm laser irradiation alone (without using PEG-Cur-Au NPs) for 10 min induced killing effect on the C540 (B16/F10) cell line in a laser power-dependent manner at power density > 0.5 W cm −2 (no toxicity for 0.5 W cm −2 ). However, PPT using PEG-Cur-Au NPs was tremendously observed after laser illumination. Even under laser irradiation at a power density of 0.5 W cm −2 of PEG-Cur-Au NPs of concentrations
doi_str_mv 10.1007/s10103-018-2538-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2042476535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2042476535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-c3a7c69fae84755317a83b0aeec36aefd96c0bfd9ff0d9aa7e6c18f0d418325c3</originalsourceid><addsrcrecordid>eNp1UU1v1DAQtVARXQo_gAuy1LPBH0mc9FZVS0GqBAeQuFmzzmTrKrFT21mpf4NfXKdbyomDPTOe9-aN_Aj5IPgnwbn-nAQXXDEuWiZr1TLximxEpWrW8Or3Cdlw2bSs7aQ4JW9TuuNc6EaoN-RUdrorldyQP9sDjAtkFzwNAwXqwQcbpjkkl3F9-rG9ZnaJdpmcZ_sw9k-QGWJ2dsREIa0shMicHyJE7Ol8G3LItxgnGCns0ecLCp46Tw8ux1Dyvhy3dqfQ41g6B0zZ7Z_2eEdeDzAmfP8cz8ivL9ufV1_Zzffrb1eXN8wqLXO5QdumGwDbSte1EhpateOAaFUDOPRdY_muhGHgfQegsbGiLXklWiVrq87I-XHuHMP9UvTNXViiL5JG8kpWuqlVXVDiiLIxpBRxMHMsm8cHI7hZXTBHF0xxwawuGFE4H58nL7sJ-xfG328vAHkEpNLye4z_pP8_9RF10JWb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042476535</pqid></control><display><type>article</type><title>Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Rahimi-Moghaddam, F. ; Azarpira, N. ; Sattarahmady, N.</creator><creatorcontrib>Rahimi-Moghaddam, F. ; Azarpira, N. ; Sattarahmady, N.</creatorcontrib><description>Hyperthermia is a promising alternative modality for the conventional cancer treatments. Nanoparticle-mediated photothermal therapy (PTT) has been widely applied for hyperthermia cancer therapy by a near-infrared light irradiation. Some special nanoparticles can convert light energy into heat and destroy the tumor cells. Inspired from the photothermal efficacy of the gold nanoparticles, here we synthesized, characterized, and applied novel photothermal polyethylene glycol-curcumin-gold nanoparticles (PEG-Cur-Au NPs) in cancer PTT. The effect of PEG-Cur-Au NPs upon irradiation by an 808-nm laser on C540 (B16/F10) cell line as well as implanted (bearing) melanoma tumor in inbred C57 mice was investigated. In vitro temperature increment, cell viability evaluation, and histological analyses were performed. The results showed a dose-dependent cytotoxicity of PEG-Cur-Au NPs toward C540 (B16/F10) cell line at concentrations ≥ 25 μg mL −1 with an IC 50 value of 42.7 μg mL −1 in dark (and with no toxicity for 10 μg mL −1 ). On the other hand, 808-nm laser irradiation alone (without using PEG-Cur-Au NPs) for 10 min induced killing effect on the C540 (B16/F10) cell line in a laser power-dependent manner at power density &gt; 0.5 W cm −2 (no toxicity for 0.5 W cm −2 ). However, PPT using PEG-Cur-Au NPs was tremendously observed after laser illumination. Even under laser irradiation at a power density of 0.5 W cm −2 of PEG-Cur-Au NPs of concentrations &lt; 10 μg mL −1 , PTT of the cells was substantial. Histological analyses and volume measurements of the induced tumors in the mice revealed an appropriate control of the tumors upon PTT by PEG-Cur-Au NPs. Combination of PEG-Cur-Au NP administration and 808-nm diode laser irradiation destroyed the melanoma cancer cells in the animal model.</description><identifier>ISSN: 0268-8921</identifier><identifier>EISSN: 1435-604X</identifier><identifier>DOI: 10.1007/s10103-018-2538-1</identifier><identifier>PMID: 29790012</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Animals ; Cancer ; Cell Line, Tumor ; Cell Survival - drug effects ; Curcumin ; Curcumin - pharmacology ; Cytotoxicity ; Dentistry ; Disease Models, Animal ; Evaluation ; Gold ; Gold - pharmacology ; Humans ; Hyperthermia ; Hyperthermia, Induced ; I.R. radiation ; Inbreeding ; Infrared radiation ; Infrared Rays ; Irradiation ; Lasers ; Light ; Light irradiation ; Male ; Medicine ; Medicine &amp; Public Health ; Melanoma ; Melanoma, Experimental - pathology ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Mice ; Mice, Inbred C57BL ; Nanocomposites ; Nanocomposites - chemistry ; Nanocomposites - ultrastructure ; Nanoparticles ; Optical Devices ; Optics ; Original Article ; Photonics ; Phototherapy ; Polyethylene glycol ; Polyethylene Glycols - chemistry ; Quantum Optics ; Therapy ; Toxicity ; Tumor Burden ; Tumor cells ; Tumors</subject><ispartof>Lasers in medical science, 2018-11, Vol.33 (8), p.1769-1779</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Lasers in Medical Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-c3a7c69fae84755317a83b0aeec36aefd96c0bfd9ff0d9aa7e6c18f0d418325c3</citedby><cites>FETCH-LOGICAL-c372t-c3a7c69fae84755317a83b0aeec36aefd96c0bfd9ff0d9aa7e6c18f0d418325c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10103-018-2538-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10103-018-2538-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29790012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahimi-Moghaddam, F.</creatorcontrib><creatorcontrib>Azarpira, N.</creatorcontrib><creatorcontrib>Sattarahmady, N.</creatorcontrib><title>Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation</title><title>Lasers in medical science</title><addtitle>Lasers Med Sci</addtitle><addtitle>Lasers Med Sci</addtitle><description>Hyperthermia is a promising alternative modality for the conventional cancer treatments. Nanoparticle-mediated photothermal therapy (PTT) has been widely applied for hyperthermia cancer therapy by a near-infrared light irradiation. Some special nanoparticles can convert light energy into heat and destroy the tumor cells. Inspired from the photothermal efficacy of the gold nanoparticles, here we synthesized, characterized, and applied novel photothermal polyethylene glycol-curcumin-gold nanoparticles (PEG-Cur-Au NPs) in cancer PTT. The effect of PEG-Cur-Au NPs upon irradiation by an 808-nm laser on C540 (B16/F10) cell line as well as implanted (bearing) melanoma tumor in inbred C57 mice was investigated. In vitro temperature increment, cell viability evaluation, and histological analyses were performed. The results showed a dose-dependent cytotoxicity of PEG-Cur-Au NPs toward C540 (B16/F10) cell line at concentrations ≥ 25 μg mL −1 with an IC 50 value of 42.7 μg mL −1 in dark (and with no toxicity for 10 μg mL −1 ). On the other hand, 808-nm laser irradiation alone (without using PEG-Cur-Au NPs) for 10 min induced killing effect on the C540 (B16/F10) cell line in a laser power-dependent manner at power density &gt; 0.5 W cm −2 (no toxicity for 0.5 W cm −2 ). However, PPT using PEG-Cur-Au NPs was tremendously observed after laser illumination. Even under laser irradiation at a power density of 0.5 W cm −2 of PEG-Cur-Au NPs of concentrations &lt; 10 μg mL −1 , PTT of the cells was substantial. Histological analyses and volume measurements of the induced tumors in the mice revealed an appropriate control of the tumors upon PTT by PEG-Cur-Au NPs. Combination of PEG-Cur-Au NP administration and 808-nm diode laser irradiation destroyed the melanoma cancer cells in the animal model.</description><subject>Animals</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Curcumin</subject><subject>Curcumin - pharmacology</subject><subject>Cytotoxicity</subject><subject>Dentistry</subject><subject>Disease Models, Animal</subject><subject>Evaluation</subject><subject>Gold</subject><subject>Gold - pharmacology</subject><subject>Humans</subject><subject>Hyperthermia</subject><subject>Hyperthermia, Induced</subject><subject>I.R. radiation</subject><subject>Inbreeding</subject><subject>Infrared radiation</subject><subject>Infrared Rays</subject><subject>Irradiation</subject><subject>Lasers</subject><subject>Light</subject><subject>Light irradiation</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Melanoma</subject><subject>Melanoma, Experimental - pathology</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>Nanocomposites - ultrastructure</subject><subject>Nanoparticles</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Original Article</subject><subject>Photonics</subject><subject>Phototherapy</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Quantum Optics</subject><subject>Therapy</subject><subject>Toxicity</subject><subject>Tumor Burden</subject><subject>Tumor cells</subject><subject>Tumors</subject><issn>0268-8921</issn><issn>1435-604X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UU1v1DAQtVARXQo_gAuy1LPBH0mc9FZVS0GqBAeQuFmzzmTrKrFT21mpf4NfXKdbyomDPTOe9-aN_Aj5IPgnwbn-nAQXXDEuWiZr1TLximxEpWrW8Or3Cdlw2bSs7aQ4JW9TuuNc6EaoN-RUdrorldyQP9sDjAtkFzwNAwXqwQcbpjkkl3F9-rG9ZnaJdpmcZ_sw9k-QGWJ2dsREIa0shMicHyJE7Ol8G3LItxgnGCns0ecLCp46Tw8ux1Dyvhy3dqfQ41g6B0zZ7Z_2eEdeDzAmfP8cz8ivL9ufV1_Zzffrb1eXN8wqLXO5QdumGwDbSte1EhpateOAaFUDOPRdY_muhGHgfQegsbGiLXklWiVrq87I-XHuHMP9UvTNXViiL5JG8kpWuqlVXVDiiLIxpBRxMHMsm8cHI7hZXTBHF0xxwawuGFE4H58nL7sJ-xfG328vAHkEpNLye4z_pP8_9RF10JWb</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Rahimi-Moghaddam, F.</creator><creator>Azarpira, N.</creator><creator>Sattarahmady, N.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20181101</creationdate><title>Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation</title><author>Rahimi-Moghaddam, F. ; Azarpira, N. ; Sattarahmady, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-c3a7c69fae84755317a83b0aeec36aefd96c0bfd9ff0d9aa7e6c18f0d418325c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Curcumin</topic><topic>Curcumin - pharmacology</topic><topic>Cytotoxicity</topic><topic>Dentistry</topic><topic>Disease Models, Animal</topic><topic>Evaluation</topic><topic>Gold</topic><topic>Gold - pharmacology</topic><topic>Humans</topic><topic>Hyperthermia</topic><topic>Hyperthermia, Induced</topic><topic>I.R. radiation</topic><topic>Inbreeding</topic><topic>Infrared radiation</topic><topic>Infrared Rays</topic><topic>Irradiation</topic><topic>Lasers</topic><topic>Light</topic><topic>Light irradiation</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Melanoma</topic><topic>Melanoma, Experimental - pathology</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>Nanocomposites - ultrastructure</topic><topic>Nanoparticles</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Original Article</topic><topic>Photonics</topic><topic>Phototherapy</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Quantum Optics</topic><topic>Therapy</topic><topic>Toxicity</topic><topic>Tumor Burden</topic><topic>Tumor cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahimi-Moghaddam, F.</creatorcontrib><creatorcontrib>Azarpira, N.</creatorcontrib><creatorcontrib>Sattarahmady, N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Lasers in medical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahimi-Moghaddam, F.</au><au>Azarpira, N.</au><au>Sattarahmady, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation</atitle><jtitle>Lasers in medical science</jtitle><stitle>Lasers Med Sci</stitle><addtitle>Lasers Med Sci</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>33</volume><issue>8</issue><spage>1769</spage><epage>1779</epage><pages>1769-1779</pages><issn>0268-8921</issn><eissn>1435-604X</eissn><abstract>Hyperthermia is a promising alternative modality for the conventional cancer treatments. Nanoparticle-mediated photothermal therapy (PTT) has been widely applied for hyperthermia cancer therapy by a near-infrared light irradiation. Some special nanoparticles can convert light energy into heat and destroy the tumor cells. Inspired from the photothermal efficacy of the gold nanoparticles, here we synthesized, characterized, and applied novel photothermal polyethylene glycol-curcumin-gold nanoparticles (PEG-Cur-Au NPs) in cancer PTT. The effect of PEG-Cur-Au NPs upon irradiation by an 808-nm laser on C540 (B16/F10) cell line as well as implanted (bearing) melanoma tumor in inbred C57 mice was investigated. In vitro temperature increment, cell viability evaluation, and histological analyses were performed. The results showed a dose-dependent cytotoxicity of PEG-Cur-Au NPs toward C540 (B16/F10) cell line at concentrations ≥ 25 μg mL −1 with an IC 50 value of 42.7 μg mL −1 in dark (and with no toxicity for 10 μg mL −1 ). On the other hand, 808-nm laser irradiation alone (without using PEG-Cur-Au NPs) for 10 min induced killing effect on the C540 (B16/F10) cell line in a laser power-dependent manner at power density &gt; 0.5 W cm −2 (no toxicity for 0.5 W cm −2 ). However, PPT using PEG-Cur-Au NPs was tremendously observed after laser illumination. Even under laser irradiation at a power density of 0.5 W cm −2 of PEG-Cur-Au NPs of concentrations &lt; 10 μg mL −1 , PTT of the cells was substantial. Histological analyses and volume measurements of the induced tumors in the mice revealed an appropriate control of the tumors upon PTT by PEG-Cur-Au NPs. Combination of PEG-Cur-Au NP administration and 808-nm diode laser irradiation destroyed the melanoma cancer cells in the animal model.</abstract><cop>London</cop><pub>Springer London</pub><pmid>29790012</pmid><doi>10.1007/s10103-018-2538-1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-8921
ispartof Lasers in medical science, 2018-11, Vol.33 (8), p.1769-1779
issn 0268-8921
1435-604X
language eng
recordid cdi_proquest_journals_2042476535
source MEDLINE; SpringerNature Journals
subjects Animals
Cancer
Cell Line, Tumor
Cell Survival - drug effects
Curcumin
Curcumin - pharmacology
Cytotoxicity
Dentistry
Disease Models, Animal
Evaluation
Gold
Gold - pharmacology
Humans
Hyperthermia
Hyperthermia, Induced
I.R. radiation
Inbreeding
Infrared radiation
Infrared Rays
Irradiation
Lasers
Light
Light irradiation
Male
Medicine
Medicine & Public Health
Melanoma
Melanoma, Experimental - pathology
Metal Nanoparticles - chemistry
Metal Nanoparticles - ultrastructure
Mice
Mice, Inbred C57BL
Nanocomposites
Nanocomposites - chemistry
Nanocomposites - ultrastructure
Nanoparticles
Optical Devices
Optics
Original Article
Photonics
Phototherapy
Polyethylene glycol
Polyethylene Glycols - chemistry
Quantum Optics
Therapy
Toxicity
Tumor Burden
Tumor cells
Tumors
title Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20a%20nanocomposite%20of%20PEG-curcumin-gold%20nanoparticles%20as%20a%20near-infrared%20photothermal%20agent:%20an%20in%20vitro%20and%20animal%20model%20investigation&rft.jtitle=Lasers%20in%20medical%20science&rft.au=Rahimi-Moghaddam,%20F.&rft.date=2018-11-01&rft.volume=33&rft.issue=8&rft.spage=1769&rft.epage=1779&rft.pages=1769-1779&rft.issn=0268-8921&rft.eissn=1435-604X&rft_id=info:doi/10.1007/s10103-018-2538-1&rft_dat=%3Cproquest_cross%3E2042476535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2042476535&rft_id=info:pmid/29790012&rfr_iscdi=true