Small-signal model for frequency analysis of thermoelectric systems
•Analytic model of the frequency response of thermoelectric modules.•Extension of previous models to account for realistic thermal contacts.•Paving the way to in-situ characterization.•Physical interpretation of the so-called thermoelectric capacitance. We show how small-signal analysis, a standard...
Gespeichert in:
Veröffentlicht in: | Energy conversion and management 2017-10, Vol.149, p.564-569 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 569 |
---|---|
container_issue | |
container_start_page | 564 |
container_title | Energy conversion and management |
container_volume | 149 |
creator | Apertet, Y. Ouerdane, H. |
description | •Analytic model of the frequency response of thermoelectric modules.•Extension of previous models to account for realistic thermal contacts.•Paving the way to in-situ characterization.•Physical interpretation of the so-called thermoelectric capacitance.
We show how small-signal analysis, a standard method in electrical engineering, may be applied to thermoelectric device performance measurement by extending a dc model to the dynamical regime. We thus provide a physical ground to ad-hoc models used to interpret impedance spectroscopy of thermoelectric elements from an electrical circuit equivalent for thermoelectric systems in the frequency domain. We particularly stress the importance of the finite thermal impedance of the thermal contacts between the thermoelectric system and the thermal reservoirs in the derivation of such models. The expression for the characteristic angular frequency of the thermoelectric system we obtain is a generalization of the expressions derived in previous studies. In particular, it allows to envisage impedance spectroscopy measurements beyond the restrictive case of adiabatic boundary conditions often difficult to achieve experimentally, and hence in-situ characterization of thermoelectric generators. |
doi_str_mv | 10.1016/j.enconman.2017.07.061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2042233062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890417306969</els_id><sourcerecordid>2042233062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-537cafb4f2589937aff10e816f3d0ce79770d2fff2a4ce3ac035a2d427ef01b63</originalsourceid><addsrcrecordid>eNqFUE1LxDAUDKLg-vEXJOC59SXpJu1NWfyCBQ_qOWTTF01pmzXpCv33Zlk9CwPv8GaGmSHkikHJgMmbrsTRhnEwY8mBqRIyJDsiC1arpuCcq2OyANbIom6gOiVnKXUAIJYgF2T1Opi-L5L_GE1Ph9BiT12I1EX82mXfmZr8mJNPNDg6fWIcAvZop-gtTXOacEgX5MSZPuHl7z0n7w_3b6unYv3y-Ly6WxdWVDAVS6GscZvK8WXdNEIZ5xhgzaQTLVhUjVLQcuccN5VFYWyOaHhbcYUO2EaKc3J98N3GkMOlSXdhF3O8pDlUnAsBkmeWPLBsDClFdHob_WDirBno_WC603-D6f1gGjIky8LbgxBzh2-PUSfrMxNbH3Nh3Qb_n8UPW7p4dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042233062</pqid></control><display><type>article</type><title>Small-signal model for frequency analysis of thermoelectric systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Apertet, Y. ; Ouerdane, H.</creator><creatorcontrib>Apertet, Y. ; Ouerdane, H.</creatorcontrib><description>•Analytic model of the frequency response of thermoelectric modules.•Extension of previous models to account for realistic thermal contacts.•Paving the way to in-situ characterization.•Physical interpretation of the so-called thermoelectric capacitance.
We show how small-signal analysis, a standard method in electrical engineering, may be applied to thermoelectric device performance measurement by extending a dc model to the dynamical regime. We thus provide a physical ground to ad-hoc models used to interpret impedance spectroscopy of thermoelectric elements from an electrical circuit equivalent for thermoelectric systems in the frequency domain. We particularly stress the importance of the finite thermal impedance of the thermal contacts between the thermoelectric system and the thermal reservoirs in the derivation of such models. The expression for the characteristic angular frequency of the thermoelectric system we obtain is a generalization of the expressions derived in previous studies. In particular, it allows to envisage impedance spectroscopy measurements beyond the restrictive case of adiabatic boundary conditions often difficult to achieve experimentally, and hence in-situ characterization of thermoelectric generators.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2017.07.061</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adiabatic ; Adiabatic flow ; Boundary conditions ; Circuits ; Contact stresses ; Data processing ; Electric contacts ; Electrical engineering ; Frequency analysis ; Generators ; Impedance ; Impedance spectroscopy ; Performance measurement ; Reservoirs ; Small signal analysis ; Small-signal model ; Spectroscopy ; Studies ; Thermoelectric characterization ; Thermoelectric generator ; Thermoelectric generators ; Thermoelectricity</subject><ispartof>Energy conversion and management, 2017-10, Vol.149, p.564-569</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Oct 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-537cafb4f2589937aff10e816f3d0ce79770d2fff2a4ce3ac035a2d427ef01b63</citedby><cites>FETCH-LOGICAL-c340t-537cafb4f2589937aff10e816f3d0ce79770d2fff2a4ce3ac035a2d427ef01b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enconman.2017.07.061$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Apertet, Y.</creatorcontrib><creatorcontrib>Ouerdane, H.</creatorcontrib><title>Small-signal model for frequency analysis of thermoelectric systems</title><title>Energy conversion and management</title><description>•Analytic model of the frequency response of thermoelectric modules.•Extension of previous models to account for realistic thermal contacts.•Paving the way to in-situ characterization.•Physical interpretation of the so-called thermoelectric capacitance.
We show how small-signal analysis, a standard method in electrical engineering, may be applied to thermoelectric device performance measurement by extending a dc model to the dynamical regime. We thus provide a physical ground to ad-hoc models used to interpret impedance spectroscopy of thermoelectric elements from an electrical circuit equivalent for thermoelectric systems in the frequency domain. We particularly stress the importance of the finite thermal impedance of the thermal contacts between the thermoelectric system and the thermal reservoirs in the derivation of such models. The expression for the characteristic angular frequency of the thermoelectric system we obtain is a generalization of the expressions derived in previous studies. In particular, it allows to envisage impedance spectroscopy measurements beyond the restrictive case of adiabatic boundary conditions often difficult to achieve experimentally, and hence in-situ characterization of thermoelectric generators.</description><subject>Adiabatic</subject><subject>Adiabatic flow</subject><subject>Boundary conditions</subject><subject>Circuits</subject><subject>Contact stresses</subject><subject>Data processing</subject><subject>Electric contacts</subject><subject>Electrical engineering</subject><subject>Frequency analysis</subject><subject>Generators</subject><subject>Impedance</subject><subject>Impedance spectroscopy</subject><subject>Performance measurement</subject><subject>Reservoirs</subject><subject>Small signal analysis</subject><subject>Small-signal model</subject><subject>Spectroscopy</subject><subject>Studies</subject><subject>Thermoelectric characterization</subject><subject>Thermoelectric generator</subject><subject>Thermoelectric generators</subject><subject>Thermoelectricity</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAUDKLg-vEXJOC59SXpJu1NWfyCBQ_qOWTTF01pmzXpCv33Zlk9CwPv8GaGmSHkikHJgMmbrsTRhnEwY8mBqRIyJDsiC1arpuCcq2OyANbIom6gOiVnKXUAIJYgF2T1Opi-L5L_GE1Ph9BiT12I1EX82mXfmZr8mJNPNDg6fWIcAvZop-gtTXOacEgX5MSZPuHl7z0n7w_3b6unYv3y-Ly6WxdWVDAVS6GscZvK8WXdNEIZ5xhgzaQTLVhUjVLQcuccN5VFYWyOaHhbcYUO2EaKc3J98N3GkMOlSXdhF3O8pDlUnAsBkmeWPLBsDClFdHob_WDirBno_WC603-D6f1gGjIky8LbgxBzh2-PUSfrMxNbH3Nh3Qb_n8UPW7p4dg</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Apertet, Y.</creator><creator>Ouerdane, H.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20171001</creationdate><title>Small-signal model for frequency analysis of thermoelectric systems</title><author>Apertet, Y. ; Ouerdane, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-537cafb4f2589937aff10e816f3d0ce79770d2fff2a4ce3ac035a2d427ef01b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adiabatic</topic><topic>Adiabatic flow</topic><topic>Boundary conditions</topic><topic>Circuits</topic><topic>Contact stresses</topic><topic>Data processing</topic><topic>Electric contacts</topic><topic>Electrical engineering</topic><topic>Frequency analysis</topic><topic>Generators</topic><topic>Impedance</topic><topic>Impedance spectroscopy</topic><topic>Performance measurement</topic><topic>Reservoirs</topic><topic>Small signal analysis</topic><topic>Small-signal model</topic><topic>Spectroscopy</topic><topic>Studies</topic><topic>Thermoelectric characterization</topic><topic>Thermoelectric generator</topic><topic>Thermoelectric generators</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apertet, Y.</creatorcontrib><creatorcontrib>Ouerdane, H.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apertet, Y.</au><au>Ouerdane, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small-signal model for frequency analysis of thermoelectric systems</atitle><jtitle>Energy conversion and management</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>149</volume><spage>564</spage><epage>569</epage><pages>564-569</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•Analytic model of the frequency response of thermoelectric modules.•Extension of previous models to account for realistic thermal contacts.•Paving the way to in-situ characterization.•Physical interpretation of the so-called thermoelectric capacitance.
We show how small-signal analysis, a standard method in electrical engineering, may be applied to thermoelectric device performance measurement by extending a dc model to the dynamical regime. We thus provide a physical ground to ad-hoc models used to interpret impedance spectroscopy of thermoelectric elements from an electrical circuit equivalent for thermoelectric systems in the frequency domain. We particularly stress the importance of the finite thermal impedance of the thermal contacts between the thermoelectric system and the thermal reservoirs in the derivation of such models. The expression for the characteristic angular frequency of the thermoelectric system we obtain is a generalization of the expressions derived in previous studies. In particular, it allows to envisage impedance spectroscopy measurements beyond the restrictive case of adiabatic boundary conditions often difficult to achieve experimentally, and hence in-situ characterization of thermoelectric generators.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2017.07.061</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8904 |
ispartof | Energy conversion and management, 2017-10, Vol.149, p.564-569 |
issn | 0196-8904 1879-2227 |
language | eng |
recordid | cdi_proquest_journals_2042233062 |
source | Access via ScienceDirect (Elsevier) |
subjects | Adiabatic Adiabatic flow Boundary conditions Circuits Contact stresses Data processing Electric contacts Electrical engineering Frequency analysis Generators Impedance Impedance spectroscopy Performance measurement Reservoirs Small signal analysis Small-signal model Spectroscopy Studies Thermoelectric characterization Thermoelectric generator Thermoelectric generators Thermoelectricity |
title | Small-signal model for frequency analysis of thermoelectric systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small-signal%20model%20for%20frequency%20analysis%20of%20thermoelectric%20systems&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Apertet,%20Y.&rft.date=2017-10-01&rft.volume=149&rft.spage=564&rft.epage=569&rft.pages=564-569&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2017.07.061&rft_dat=%3Cproquest_cross%3E2042233062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2042233062&rft_id=info:pmid/&rft_els_id=S0196890417306969&rfr_iscdi=true |