Small-signal model for frequency analysis of thermoelectric systems

•Analytic model of the frequency response of thermoelectric modules.•Extension of previous models to account for realistic thermal contacts.•Paving the way to in-situ characterization.•Physical interpretation of the so-called thermoelectric capacitance. We show how small-signal analysis, a standard...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2017-10, Vol.149, p.564-569
Hauptverfasser: Apertet, Y., Ouerdane, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 569
container_issue
container_start_page 564
container_title Energy conversion and management
container_volume 149
creator Apertet, Y.
Ouerdane, H.
description •Analytic model of the frequency response of thermoelectric modules.•Extension of previous models to account for realistic thermal contacts.•Paving the way to in-situ characterization.•Physical interpretation of the so-called thermoelectric capacitance. We show how small-signal analysis, a standard method in electrical engineering, may be applied to thermoelectric device performance measurement by extending a dc model to the dynamical regime. We thus provide a physical ground to ad-hoc models used to interpret impedance spectroscopy of thermoelectric elements from an electrical circuit equivalent for thermoelectric systems in the frequency domain. We particularly stress the importance of the finite thermal impedance of the thermal contacts between the thermoelectric system and the thermal reservoirs in the derivation of such models. The expression for the characteristic angular frequency of the thermoelectric system we obtain is a generalization of the expressions derived in previous studies. In particular, it allows to envisage impedance spectroscopy measurements beyond the restrictive case of adiabatic boundary conditions often difficult to achieve experimentally, and hence in-situ characterization of thermoelectric generators.
doi_str_mv 10.1016/j.enconman.2017.07.061
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2042233062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890417306969</els_id><sourcerecordid>2042233062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-537cafb4f2589937aff10e816f3d0ce79770d2fff2a4ce3ac035a2d427ef01b63</originalsourceid><addsrcrecordid>eNqFUE1LxDAUDKLg-vEXJOC59SXpJu1NWfyCBQ_qOWTTF01pmzXpCv33Zlk9CwPv8GaGmSHkikHJgMmbrsTRhnEwY8mBqRIyJDsiC1arpuCcq2OyANbIom6gOiVnKXUAIJYgF2T1Opi-L5L_GE1Ph9BiT12I1EX82mXfmZr8mJNPNDg6fWIcAvZop-gtTXOacEgX5MSZPuHl7z0n7w_3b6unYv3y-Ly6WxdWVDAVS6GscZvK8WXdNEIZ5xhgzaQTLVhUjVLQcuccN5VFYWyOaHhbcYUO2EaKc3J98N3GkMOlSXdhF3O8pDlUnAsBkmeWPLBsDClFdHob_WDirBno_WC603-D6f1gGjIky8LbgxBzh2-PUSfrMxNbH3Nh3Qb_n8UPW7p4dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042233062</pqid></control><display><type>article</type><title>Small-signal model for frequency analysis of thermoelectric systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Apertet, Y. ; Ouerdane, H.</creator><creatorcontrib>Apertet, Y. ; Ouerdane, H.</creatorcontrib><description>•Analytic model of the frequency response of thermoelectric modules.•Extension of previous models to account for realistic thermal contacts.•Paving the way to in-situ characterization.•Physical interpretation of the so-called thermoelectric capacitance. We show how small-signal analysis, a standard method in electrical engineering, may be applied to thermoelectric device performance measurement by extending a dc model to the dynamical regime. We thus provide a physical ground to ad-hoc models used to interpret impedance spectroscopy of thermoelectric elements from an electrical circuit equivalent for thermoelectric systems in the frequency domain. We particularly stress the importance of the finite thermal impedance of the thermal contacts between the thermoelectric system and the thermal reservoirs in the derivation of such models. The expression for the characteristic angular frequency of the thermoelectric system we obtain is a generalization of the expressions derived in previous studies. In particular, it allows to envisage impedance spectroscopy measurements beyond the restrictive case of adiabatic boundary conditions often difficult to achieve experimentally, and hence in-situ characterization of thermoelectric generators.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2017.07.061</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adiabatic ; Adiabatic flow ; Boundary conditions ; Circuits ; Contact stresses ; Data processing ; Electric contacts ; Electrical engineering ; Frequency analysis ; Generators ; Impedance ; Impedance spectroscopy ; Performance measurement ; Reservoirs ; Small signal analysis ; Small-signal model ; Spectroscopy ; Studies ; Thermoelectric characterization ; Thermoelectric generator ; Thermoelectric generators ; Thermoelectricity</subject><ispartof>Energy conversion and management, 2017-10, Vol.149, p.564-569</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Oct 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-537cafb4f2589937aff10e816f3d0ce79770d2fff2a4ce3ac035a2d427ef01b63</citedby><cites>FETCH-LOGICAL-c340t-537cafb4f2589937aff10e816f3d0ce79770d2fff2a4ce3ac035a2d427ef01b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enconman.2017.07.061$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Apertet, Y.</creatorcontrib><creatorcontrib>Ouerdane, H.</creatorcontrib><title>Small-signal model for frequency analysis of thermoelectric systems</title><title>Energy conversion and management</title><description>•Analytic model of the frequency response of thermoelectric modules.•Extension of previous models to account for realistic thermal contacts.•Paving the way to in-situ characterization.•Physical interpretation of the so-called thermoelectric capacitance. We show how small-signal analysis, a standard method in electrical engineering, may be applied to thermoelectric device performance measurement by extending a dc model to the dynamical regime. We thus provide a physical ground to ad-hoc models used to interpret impedance spectroscopy of thermoelectric elements from an electrical circuit equivalent for thermoelectric systems in the frequency domain. We particularly stress the importance of the finite thermal impedance of the thermal contacts between the thermoelectric system and the thermal reservoirs in the derivation of such models. The expression for the characteristic angular frequency of the thermoelectric system we obtain is a generalization of the expressions derived in previous studies. In particular, it allows to envisage impedance spectroscopy measurements beyond the restrictive case of adiabatic boundary conditions often difficult to achieve experimentally, and hence in-situ characterization of thermoelectric generators.</description><subject>Adiabatic</subject><subject>Adiabatic flow</subject><subject>Boundary conditions</subject><subject>Circuits</subject><subject>Contact stresses</subject><subject>Data processing</subject><subject>Electric contacts</subject><subject>Electrical engineering</subject><subject>Frequency analysis</subject><subject>Generators</subject><subject>Impedance</subject><subject>Impedance spectroscopy</subject><subject>Performance measurement</subject><subject>Reservoirs</subject><subject>Small signal analysis</subject><subject>Small-signal model</subject><subject>Spectroscopy</subject><subject>Studies</subject><subject>Thermoelectric characterization</subject><subject>Thermoelectric generator</subject><subject>Thermoelectric generators</subject><subject>Thermoelectricity</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAUDKLg-vEXJOC59SXpJu1NWfyCBQ_qOWTTF01pmzXpCv33Zlk9CwPv8GaGmSHkikHJgMmbrsTRhnEwY8mBqRIyJDsiC1arpuCcq2OyANbIom6gOiVnKXUAIJYgF2T1Opi-L5L_GE1Ph9BiT12I1EX82mXfmZr8mJNPNDg6fWIcAvZop-gtTXOacEgX5MSZPuHl7z0n7w_3b6unYv3y-Ly6WxdWVDAVS6GscZvK8WXdNEIZ5xhgzaQTLVhUjVLQcuccN5VFYWyOaHhbcYUO2EaKc3J98N3GkMOlSXdhF3O8pDlUnAsBkmeWPLBsDClFdHob_WDirBno_WC603-D6f1gGjIky8LbgxBzh2-PUSfrMxNbH3Nh3Qb_n8UPW7p4dg</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Apertet, Y.</creator><creator>Ouerdane, H.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20171001</creationdate><title>Small-signal model for frequency analysis of thermoelectric systems</title><author>Apertet, Y. ; Ouerdane, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-537cafb4f2589937aff10e816f3d0ce79770d2fff2a4ce3ac035a2d427ef01b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adiabatic</topic><topic>Adiabatic flow</topic><topic>Boundary conditions</topic><topic>Circuits</topic><topic>Contact stresses</topic><topic>Data processing</topic><topic>Electric contacts</topic><topic>Electrical engineering</topic><topic>Frequency analysis</topic><topic>Generators</topic><topic>Impedance</topic><topic>Impedance spectroscopy</topic><topic>Performance measurement</topic><topic>Reservoirs</topic><topic>Small signal analysis</topic><topic>Small-signal model</topic><topic>Spectroscopy</topic><topic>Studies</topic><topic>Thermoelectric characterization</topic><topic>Thermoelectric generator</topic><topic>Thermoelectric generators</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apertet, Y.</creatorcontrib><creatorcontrib>Ouerdane, H.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apertet, Y.</au><au>Ouerdane, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small-signal model for frequency analysis of thermoelectric systems</atitle><jtitle>Energy conversion and management</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>149</volume><spage>564</spage><epage>569</epage><pages>564-569</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•Analytic model of the frequency response of thermoelectric modules.•Extension of previous models to account for realistic thermal contacts.•Paving the way to in-situ characterization.•Physical interpretation of the so-called thermoelectric capacitance. We show how small-signal analysis, a standard method in electrical engineering, may be applied to thermoelectric device performance measurement by extending a dc model to the dynamical regime. We thus provide a physical ground to ad-hoc models used to interpret impedance spectroscopy of thermoelectric elements from an electrical circuit equivalent for thermoelectric systems in the frequency domain. We particularly stress the importance of the finite thermal impedance of the thermal contacts between the thermoelectric system and the thermal reservoirs in the derivation of such models. The expression for the characteristic angular frequency of the thermoelectric system we obtain is a generalization of the expressions derived in previous studies. In particular, it allows to envisage impedance spectroscopy measurements beyond the restrictive case of adiabatic boundary conditions often difficult to achieve experimentally, and hence in-situ characterization of thermoelectric generators.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2017.07.061</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2017-10, Vol.149, p.564-569
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_journals_2042233062
source Access via ScienceDirect (Elsevier)
subjects Adiabatic
Adiabatic flow
Boundary conditions
Circuits
Contact stresses
Data processing
Electric contacts
Electrical engineering
Frequency analysis
Generators
Impedance
Impedance spectroscopy
Performance measurement
Reservoirs
Small signal analysis
Small-signal model
Spectroscopy
Studies
Thermoelectric characterization
Thermoelectric generator
Thermoelectric generators
Thermoelectricity
title Small-signal model for frequency analysis of thermoelectric systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small-signal%20model%20for%20frequency%20analysis%20of%20thermoelectric%20systems&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Apertet,%20Y.&rft.date=2017-10-01&rft.volume=149&rft.spage=564&rft.epage=569&rft.pages=564-569&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2017.07.061&rft_dat=%3Cproquest_cross%3E2042233062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2042233062&rft_id=info:pmid/&rft_els_id=S0196890417306969&rfr_iscdi=true