Investigation on novel modular sorption thermal cell with improved energy charging and discharging performance

•A promising modular sorption thermal cell is analyzed for combined cold and heat storage.•Permeability of novel composite sorbent is further improved by adding carbon coated nickel.•Sorption rate of novel sorbent is accelerated based on heat and mass transfer enhancement.•Sorption thermal cell of n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2017-09, Vol.148, p.110-119
Hauptverfasser: Jiang, L., Wang, R.Z., Lu, Y.J., Roskilly, A.P., Wang, L.W., Tang, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue
container_start_page 110
container_title Energy conversion and management
container_volume 148
creator Jiang, L.
Wang, R.Z.
Lu, Y.J.
Roskilly, A.P.
Wang, L.W.
Tang, K.
description •A promising modular sorption thermal cell is analyzed for combined cold and heat storage.•Permeability of novel composite sorbent is further improved by adding carbon coated nickel.•Sorption rate of novel sorbent is accelerated based on heat and mass transfer enhancement.•Sorption thermal cell of novel composite sorbent has great potentials for scaling applications. Novel composite strontium chloride is developed with expanded natural graphite and carbon coated nickel as the additives. It is indicated that expanded natural graphite and carbon coated nickel are conducive to heat and mass transfer performance, which result in improved sorption characteristic. For composite sorbents with carbon coated nickel, thermal conductivity and permeability range from 0.57W·m−1K−1 to 1.93Wm−1K−1 and from 2.98×10−10m2 to 2.71×10−13m2. Novel composite strontium chloride with carbon coated metal enjoys the faster desorption and sorption reaction rate than that without carbon coated metal. For different evaporation temperatures, sorption quantity of novel composite strontium chloride ranges from 0.28kgkg−1 to 0.7kgkg−1. Based on testing results of sorbents with carbon coated nickel, a promising sorption thermal cell is developed and analyzed for combined cold and heat storage, which greatly enhances the versatility and working reliability. Under different working conditions, cold and heat density range from 384kJkg−1 to 811kJkg−1 and 549kJkg−1 to 1648kJkg−1. Modular sorption thermal cell could be flexible connected to sorption battery for scaling applications, which reveals great potentials for renewable energy utilization and waste heat recovery.
doi_str_mv 10.1016/j.enconman.2017.05.067
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2042232225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890417305253</els_id><sourcerecordid>2042232225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-a7512a43d6bfe7c8e25834bdd17e328059043a0ba939df3e7ead842a6a21841f3</originalsourceid><addsrcrecordid>eNqFkF1LwzAYhYMoOKd_QQJet-ajbdo7ZfgFA2_0OmTJ2y6lTWbSTfbvzZx6KwRCyDnnfc-D0DUlOSW0uu1zcNq7UbmcESpyUuakEidoRmvRZIwxcYpmhDZVVjekOEcXMfaEEF6Saobci9tBnGynJusdTsf5HQx49GY7qICjD5vvn2kNYVQD1jAM-NNOa2zHTUhag8FB6PZYr1XorOuwcgYbG__eGwitT2an4RKdtWqIcPVzz9H748Pb4jlbvj69LO6XmS5YOWVKlJSpgptq1YLQNbCy5sXKGCqAs5qUqQhXZKUa3piWgwBl6oKpSjFaF7Tlc3RzzE0rfmxTQdn7bXBppGSkYIwnLGVSVUeVDj7GAK3cBDuqsJeUyANb2ctftvLAVpJSJrbJeHc0QuqwsxBk1DYpwdgAepLG2_8ivgCBBoh9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042232225</pqid></control><display><type>article</type><title>Investigation on novel modular sorption thermal cell with improved energy charging and discharging performance</title><source>Elsevier ScienceDirect Journals</source><creator>Jiang, L. ; Wang, R.Z. ; Lu, Y.J. ; Roskilly, A.P. ; Wang, L.W. ; Tang, K.</creator><creatorcontrib>Jiang, L. ; Wang, R.Z. ; Lu, Y.J. ; Roskilly, A.P. ; Wang, L.W. ; Tang, K.</creatorcontrib><description>•A promising modular sorption thermal cell is analyzed for combined cold and heat storage.•Permeability of novel composite sorbent is further improved by adding carbon coated nickel.•Sorption rate of novel sorbent is accelerated based on heat and mass transfer enhancement.•Sorption thermal cell of novel composite sorbent has great potentials for scaling applications. Novel composite strontium chloride is developed with expanded natural graphite and carbon coated nickel as the additives. It is indicated that expanded natural graphite and carbon coated nickel are conducive to heat and mass transfer performance, which result in improved sorption characteristic. For composite sorbents with carbon coated nickel, thermal conductivity and permeability range from 0.57W·m−1K−1 to 1.93Wm−1K−1 and from 2.98×10−10m2 to 2.71×10−13m2. Novel composite strontium chloride with carbon coated metal enjoys the faster desorption and sorption reaction rate than that without carbon coated metal. For different evaporation temperatures, sorption quantity of novel composite strontium chloride ranges from 0.28kgkg−1 to 0.7kgkg−1. Based on testing results of sorbents with carbon coated nickel, a promising sorption thermal cell is developed and analyzed for combined cold and heat storage, which greatly enhances the versatility and working reliability. Under different working conditions, cold and heat density range from 384kJkg−1 to 811kJkg−1 and 549kJkg−1 to 1648kJkg−1. Modular sorption thermal cell could be flexible connected to sorption battery for scaling applications, which reveals great potentials for renewable energy utilization and waste heat recovery.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2017.05.067</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Additives ; Batteries ; Carbon ; Cells ; Chemical compounds ; Chlorides ; Coating ; Coatings ; Cold storage ; Composite strontium chloride ; Energy ; Energy consumption ; Energy utilization ; Evaporation ; Evaporation rate ; Graphite ; Heat ; Heat and mass transfer ; Heat recovery ; Heat storage ; Heat transfer ; Mass transfer ; Metals ; Modular sorption thermal cell ; Nickel ; Permeability ; Reliability ; Reliability aspects ; Renewable energy ; Scaling ; Sorbents ; Sorption ; Sorption characteristic ; Strontium ; Thermal conductivity ; Waste heat recovery ; Working conditions</subject><ispartof>Energy conversion and management, 2017-09, Vol.148, p.110-119</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Sep 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-a7512a43d6bfe7c8e25834bdd17e328059043a0ba939df3e7ead842a6a21841f3</citedby><cites>FETCH-LOGICAL-c425t-a7512a43d6bfe7c8e25834bdd17e328059043a0ba939df3e7ead842a6a21841f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890417305253$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Jiang, L.</creatorcontrib><creatorcontrib>Wang, R.Z.</creatorcontrib><creatorcontrib>Lu, Y.J.</creatorcontrib><creatorcontrib>Roskilly, A.P.</creatorcontrib><creatorcontrib>Wang, L.W.</creatorcontrib><creatorcontrib>Tang, K.</creatorcontrib><title>Investigation on novel modular sorption thermal cell with improved energy charging and discharging performance</title><title>Energy conversion and management</title><description>•A promising modular sorption thermal cell is analyzed for combined cold and heat storage.•Permeability of novel composite sorbent is further improved by adding carbon coated nickel.•Sorption rate of novel sorbent is accelerated based on heat and mass transfer enhancement.•Sorption thermal cell of novel composite sorbent has great potentials for scaling applications. Novel composite strontium chloride is developed with expanded natural graphite and carbon coated nickel as the additives. It is indicated that expanded natural graphite and carbon coated nickel are conducive to heat and mass transfer performance, which result in improved sorption characteristic. For composite sorbents with carbon coated nickel, thermal conductivity and permeability range from 0.57W·m−1K−1 to 1.93Wm−1K−1 and from 2.98×10−10m2 to 2.71×10−13m2. Novel composite strontium chloride with carbon coated metal enjoys the faster desorption and sorption reaction rate than that without carbon coated metal. For different evaporation temperatures, sorption quantity of novel composite strontium chloride ranges from 0.28kgkg−1 to 0.7kgkg−1. Based on testing results of sorbents with carbon coated nickel, a promising sorption thermal cell is developed and analyzed for combined cold and heat storage, which greatly enhances the versatility and working reliability. Under different working conditions, cold and heat density range from 384kJkg−1 to 811kJkg−1 and 549kJkg−1 to 1648kJkg−1. Modular sorption thermal cell could be flexible connected to sorption battery for scaling applications, which reveals great potentials for renewable energy utilization and waste heat recovery.</description><subject>Additives</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Cells</subject><subject>Chemical compounds</subject><subject>Chlorides</subject><subject>Coating</subject><subject>Coatings</subject><subject>Cold storage</subject><subject>Composite strontium chloride</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Energy utilization</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Graphite</subject><subject>Heat</subject><subject>Heat and mass transfer</subject><subject>Heat recovery</subject><subject>Heat storage</subject><subject>Heat transfer</subject><subject>Mass transfer</subject><subject>Metals</subject><subject>Modular sorption thermal cell</subject><subject>Nickel</subject><subject>Permeability</subject><subject>Reliability</subject><subject>Reliability aspects</subject><subject>Renewable energy</subject><subject>Scaling</subject><subject>Sorbents</subject><subject>Sorption</subject><subject>Sorption characteristic</subject><subject>Strontium</subject><subject>Thermal conductivity</subject><subject>Waste heat recovery</subject><subject>Working conditions</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAYhYMoOKd_QQJet-ajbdo7ZfgFA2_0OmTJ2y6lTWbSTfbvzZx6KwRCyDnnfc-D0DUlOSW0uu1zcNq7UbmcESpyUuakEidoRmvRZIwxcYpmhDZVVjekOEcXMfaEEF6Saobci9tBnGynJusdTsf5HQx49GY7qICjD5vvn2kNYVQD1jAM-NNOa2zHTUhag8FB6PZYr1XorOuwcgYbG__eGwitT2an4RKdtWqIcPVzz9H748Pb4jlbvj69LO6XmS5YOWVKlJSpgptq1YLQNbCy5sXKGCqAs5qUqQhXZKUa3piWgwBl6oKpSjFaF7Tlc3RzzE0rfmxTQdn7bXBppGSkYIwnLGVSVUeVDj7GAK3cBDuqsJeUyANb2ctftvLAVpJSJrbJeHc0QuqwsxBk1DYpwdgAepLG2_8ivgCBBoh9</recordid><startdate>20170915</startdate><enddate>20170915</enddate><creator>Jiang, L.</creator><creator>Wang, R.Z.</creator><creator>Lu, Y.J.</creator><creator>Roskilly, A.P.</creator><creator>Wang, L.W.</creator><creator>Tang, K.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20170915</creationdate><title>Investigation on novel modular sorption thermal cell with improved energy charging and discharging performance</title><author>Jiang, L. ; Wang, R.Z. ; Lu, Y.J. ; Roskilly, A.P. ; Wang, L.W. ; Tang, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-a7512a43d6bfe7c8e25834bdd17e328059043a0ba939df3e7ead842a6a21841f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Additives</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Cells</topic><topic>Chemical compounds</topic><topic>Chlorides</topic><topic>Coating</topic><topic>Coatings</topic><topic>Cold storage</topic><topic>Composite strontium chloride</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Energy utilization</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Graphite</topic><topic>Heat</topic><topic>Heat and mass transfer</topic><topic>Heat recovery</topic><topic>Heat storage</topic><topic>Heat transfer</topic><topic>Mass transfer</topic><topic>Metals</topic><topic>Modular sorption thermal cell</topic><topic>Nickel</topic><topic>Permeability</topic><topic>Reliability</topic><topic>Reliability aspects</topic><topic>Renewable energy</topic><topic>Scaling</topic><topic>Sorbents</topic><topic>Sorption</topic><topic>Sorption characteristic</topic><topic>Strontium</topic><topic>Thermal conductivity</topic><topic>Waste heat recovery</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, L.</creatorcontrib><creatorcontrib>Wang, R.Z.</creatorcontrib><creatorcontrib>Lu, Y.J.</creatorcontrib><creatorcontrib>Roskilly, A.P.</creatorcontrib><creatorcontrib>Wang, L.W.</creatorcontrib><creatorcontrib>Tang, K.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, L.</au><au>Wang, R.Z.</au><au>Lu, Y.J.</au><au>Roskilly, A.P.</au><au>Wang, L.W.</au><au>Tang, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation on novel modular sorption thermal cell with improved energy charging and discharging performance</atitle><jtitle>Energy conversion and management</jtitle><date>2017-09-15</date><risdate>2017</risdate><volume>148</volume><spage>110</spage><epage>119</epage><pages>110-119</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•A promising modular sorption thermal cell is analyzed for combined cold and heat storage.•Permeability of novel composite sorbent is further improved by adding carbon coated nickel.•Sorption rate of novel sorbent is accelerated based on heat and mass transfer enhancement.•Sorption thermal cell of novel composite sorbent has great potentials for scaling applications. Novel composite strontium chloride is developed with expanded natural graphite and carbon coated nickel as the additives. It is indicated that expanded natural graphite and carbon coated nickel are conducive to heat and mass transfer performance, which result in improved sorption characteristic. For composite sorbents with carbon coated nickel, thermal conductivity and permeability range from 0.57W·m−1K−1 to 1.93Wm−1K−1 and from 2.98×10−10m2 to 2.71×10−13m2. Novel composite strontium chloride with carbon coated metal enjoys the faster desorption and sorption reaction rate than that without carbon coated metal. For different evaporation temperatures, sorption quantity of novel composite strontium chloride ranges from 0.28kgkg−1 to 0.7kgkg−1. Based on testing results of sorbents with carbon coated nickel, a promising sorption thermal cell is developed and analyzed for combined cold and heat storage, which greatly enhances the versatility and working reliability. Under different working conditions, cold and heat density range from 384kJkg−1 to 811kJkg−1 and 549kJkg−1 to 1648kJkg−1. Modular sorption thermal cell could be flexible connected to sorption battery for scaling applications, which reveals great potentials for renewable energy utilization and waste heat recovery.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2017.05.067</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2017-09, Vol.148, p.110-119
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_journals_2042232225
source Elsevier ScienceDirect Journals
subjects Additives
Batteries
Carbon
Cells
Chemical compounds
Chlorides
Coating
Coatings
Cold storage
Composite strontium chloride
Energy
Energy consumption
Energy utilization
Evaporation
Evaporation rate
Graphite
Heat
Heat and mass transfer
Heat recovery
Heat storage
Heat transfer
Mass transfer
Metals
Modular sorption thermal cell
Nickel
Permeability
Reliability
Reliability aspects
Renewable energy
Scaling
Sorbents
Sorption
Sorption characteristic
Strontium
Thermal conductivity
Waste heat recovery
Working conditions
title Investigation on novel modular sorption thermal cell with improved energy charging and discharging performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A22%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20on%20novel%20modular%20sorption%20thermal%20cell%20with%20improved%20energy%20charging%20and%20discharging%20performance&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Jiang,%20L.&rft.date=2017-09-15&rft.volume=148&rft.spage=110&rft.epage=119&rft.pages=110-119&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2017.05.067&rft_dat=%3Cproquest_cross%3E2042232225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2042232225&rft_id=info:pmid/&rft_els_id=S0196890417305253&rfr_iscdi=true