Global convergence of a robust filter SQP algorithm

We present a robust filter SQP algorithm for solving constrained optimization problems. This algorithm is based on the modified quadratic programming proposed by Burke to avoid the infeasibility of the quadratic programming subproblem at each iteration. Compared with other filter SQP algorithms, our...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2010-10, Vol.206 (1), p.34-45
Hauptverfasser: Shen, Chungen, Xue, Wenjuan, Chen, Xiongda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue 1
container_start_page 34
container_title European journal of operational research
container_volume 206
creator Shen, Chungen
Xue, Wenjuan
Chen, Xiongda
description We present a robust filter SQP algorithm for solving constrained optimization problems. This algorithm is based on the modified quadratic programming proposed by Burke to avoid the infeasibility of the quadratic programming subproblem at each iteration. Compared with other filter SQP algorithms, our algorithm does not require any restoration phase procedure which may spend a large amount of computation. The main advantage of our algorithm is that it is globally convergent without requiring strong constraint qualifications, such as Mangasarian–Fromovitz constraint qualification (MFCQ) and the constant rank constraint qualification (CRCQ). Furthermore, the feasible limit points of the sequence generated by our algorithm are proven to be the KKT points if some weaker conditions are satisfied. Numerical results are also presented to show the efficiency of the algorithm.
doi_str_mv 10.1016/j.ejor.2010.02.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204197336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221710001621</els_id><sourcerecordid>2004689601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-7c355597e912f095bcc1d466e8e79721ad4cd9b70ba96705885111e726569b963</originalsourceid><addsrcrecordid>eNp9kFFrHCEUhSU0kG3aP9CnodDH2dyro47QlxLaJBBIStpncZw7icPsutXZhfz7OtmQxwhHRc45Xj7GviCsEVBdjGsaY1pzKA_A1yDwhK2w1bxWrYIPbAVC65pz1GfsY84jAKBEuWLiaoqdmyoftwdKj7T1VMWhclWK3T7P1RCmmVL18Pu-ctNjTGF-2nxip4ObMn1-Pc_Z318__1xe17d3VzeXP25r33Ax19oLKaXRZJAPYGTnPfaNUtSSNpqj6xvfm05D54zSINtWIiJprqQynVHinH099u5S_LenPNsx7tO2fGk5NGi0EIuJH00-xZwTDXaXwsalZ4tgFzZ2tAsbu7CxwG1hU0I3x1CiHfm3BJVVrJTtwQrHQZX9-eVWosKFIizaFYnGNtI-zZvS9e11Spe9m4bktj7kt07OFTccoPi-H31UkB0CJZt9WHj3IZGfbR_DeyP_BwQ_kBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204197336</pqid></control><display><type>article</type><title>Global convergence of a robust filter SQP algorithm</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Shen, Chungen ; Xue, Wenjuan ; Chen, Xiongda</creator><creatorcontrib>Shen, Chungen ; Xue, Wenjuan ; Chen, Xiongda</creatorcontrib><description>We present a robust filter SQP algorithm for solving constrained optimization problems. This algorithm is based on the modified quadratic programming proposed by Burke to avoid the infeasibility of the quadratic programming subproblem at each iteration. Compared with other filter SQP algorithms, our algorithm does not require any restoration phase procedure which may spend a large amount of computation. The main advantage of our algorithm is that it is globally convergent without requiring strong constraint qualifications, such as Mangasarian–Fromovitz constraint qualification (MFCQ) and the constant rank constraint qualification (CRCQ). Furthermore, the feasible limit points of the sequence generated by our algorithm are proven to be the KKT points if some weaker conditions are satisfied. Numerical results are also presented to show the efficiency of the algorithm.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2010.02.031</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Applied sciences ; Comparative analysis ; Constrained optimization ; Convergence ; CPLD ; Exact sciences and technology ; Filter ; Filter SQP Constrained optimization CPLD ; Mathematical programming ; Operational research and scientific management ; Operational research. Management science ; Optimization algorithms ; Quadratic programming ; SQP ; Studies</subject><ispartof>European journal of operational research, 2010-10, Vol.206 (1), p.34-45</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Oct 1, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-7c355597e912f095bcc1d466e8e79721ad4cd9b70ba96705885111e726569b963</citedby><cites>FETCH-LOGICAL-c423t-7c355597e912f095bcc1d466e8e79721ad4cd9b70ba96705885111e726569b963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2010.02.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,3998,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22629200$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a206_3ay_3a2010_3ai_3a1_3ap_3a34-45.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Chungen</creatorcontrib><creatorcontrib>Xue, Wenjuan</creatorcontrib><creatorcontrib>Chen, Xiongda</creatorcontrib><title>Global convergence of a robust filter SQP algorithm</title><title>European journal of operational research</title><description>We present a robust filter SQP algorithm for solving constrained optimization problems. This algorithm is based on the modified quadratic programming proposed by Burke to avoid the infeasibility of the quadratic programming subproblem at each iteration. Compared with other filter SQP algorithms, our algorithm does not require any restoration phase procedure which may spend a large amount of computation. The main advantage of our algorithm is that it is globally convergent without requiring strong constraint qualifications, such as Mangasarian–Fromovitz constraint qualification (MFCQ) and the constant rank constraint qualification (CRCQ). Furthermore, the feasible limit points of the sequence generated by our algorithm are proven to be the KKT points if some weaker conditions are satisfied. Numerical results are also presented to show the efficiency of the algorithm.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Comparative analysis</subject><subject>Constrained optimization</subject><subject>Convergence</subject><subject>CPLD</subject><subject>Exact sciences and technology</subject><subject>Filter</subject><subject>Filter SQP Constrained optimization CPLD</subject><subject>Mathematical programming</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization algorithms</subject><subject>Quadratic programming</subject><subject>SQP</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kFFrHCEUhSU0kG3aP9CnodDH2dyro47QlxLaJBBIStpncZw7icPsutXZhfz7OtmQxwhHRc45Xj7GviCsEVBdjGsaY1pzKA_A1yDwhK2w1bxWrYIPbAVC65pz1GfsY84jAKBEuWLiaoqdmyoftwdKj7T1VMWhclWK3T7P1RCmmVL18Pu-ctNjTGF-2nxip4ObMn1-Pc_Z318__1xe17d3VzeXP25r33Ax19oLKaXRZJAPYGTnPfaNUtSSNpqj6xvfm05D54zSINtWIiJprqQynVHinH099u5S_LenPNsx7tO2fGk5NGi0EIuJH00-xZwTDXaXwsalZ4tgFzZ2tAsbu7CxwG1hU0I3x1CiHfm3BJVVrJTtwQrHQZX9-eVWosKFIizaFYnGNtI-zZvS9e11Spe9m4bktj7kt07OFTccoPi-H31UkB0CJZt9WHj3IZGfbR_DeyP_BwQ_kBk</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Shen, Chungen</creator><creator>Xue, Wenjuan</creator><creator>Chen, Xiongda</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101001</creationdate><title>Global convergence of a robust filter SQP algorithm</title><author>Shen, Chungen ; Xue, Wenjuan ; Chen, Xiongda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-7c355597e912f095bcc1d466e8e79721ad4cd9b70ba96705885111e726569b963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Comparative analysis</topic><topic>Constrained optimization</topic><topic>Convergence</topic><topic>CPLD</topic><topic>Exact sciences and technology</topic><topic>Filter</topic><topic>Filter SQP Constrained optimization CPLD</topic><topic>Mathematical programming</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization algorithms</topic><topic>Quadratic programming</topic><topic>SQP</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Chungen</creatorcontrib><creatorcontrib>Xue, Wenjuan</creatorcontrib><creatorcontrib>Chen, Xiongda</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Chungen</au><au>Xue, Wenjuan</au><au>Chen, Xiongda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global convergence of a robust filter SQP algorithm</atitle><jtitle>European journal of operational research</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>206</volume><issue>1</issue><spage>34</spage><epage>45</epage><pages>34-45</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>We present a robust filter SQP algorithm for solving constrained optimization problems. This algorithm is based on the modified quadratic programming proposed by Burke to avoid the infeasibility of the quadratic programming subproblem at each iteration. Compared with other filter SQP algorithms, our algorithm does not require any restoration phase procedure which may spend a large amount of computation. The main advantage of our algorithm is that it is globally convergent without requiring strong constraint qualifications, such as Mangasarian–Fromovitz constraint qualification (MFCQ) and the constant rank constraint qualification (CRCQ). Furthermore, the feasible limit points of the sequence generated by our algorithm are proven to be the KKT points if some weaker conditions are satisfied. Numerical results are also presented to show the efficiency of the algorithm.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2010.02.031</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2010-10, Vol.206 (1), p.34-45
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204197336
source RePEc; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Applied sciences
Comparative analysis
Constrained optimization
Convergence
CPLD
Exact sciences and technology
Filter
Filter SQP Constrained optimization CPLD
Mathematical programming
Operational research and scientific management
Operational research. Management science
Optimization algorithms
Quadratic programming
SQP
Studies
title Global convergence of a robust filter SQP algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20convergence%20of%20a%20robust%20filter%20SQP%20algorithm&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Shen,%20Chungen&rft.date=2010-10-01&rft.volume=206&rft.issue=1&rft.spage=34&rft.epage=45&rft.pages=34-45&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2010.02.031&rft_dat=%3Cproquest_cross%3E2004689601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204197336&rft_id=info:pmid/&rft_els_id=S0377221710001621&rfr_iscdi=true