Electrophoretically-Deposited Nano-Fe3O4@carbon 3D Structure on Carbon Fiber as High-Performance Supercapacitors

Structural and electrochemical behaviors of electrophortically-deposited Fe 3 O 4 and Fe 3 O 4 @C nanoparticles on carbon fiber (CF) were investigated. The nanoparticles were synthesized via a green-assisted hydrothermal route. The as-prepared samples were characterized by x-ray diffraction, transmi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2018-08, Vol.47 (8), p.4807-4812
Hauptverfasser: Hajalilou, Abdollah, Etemadifar, Reza, Abbasi-Chianeh, Vahid, Abouzari-Lotf, Ebrahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4812
container_issue 8
container_start_page 4807
container_title Journal of electronic materials
container_volume 47
creator Hajalilou, Abdollah
Etemadifar, Reza
Abbasi-Chianeh, Vahid
Abouzari-Lotf, Ebrahim
description Structural and electrochemical behaviors of electrophortically-deposited Fe 3 O 4 and Fe 3 O 4 @C nanoparticles on carbon fiber (CF) were investigated. The nanoparticles were synthesized via a green-assisted hydrothermal route. The as-prepared samples were characterized by x-ray diffraction, transmission and scanning electron microscopies, Fourier transform infrared and UV–visible spectroscopies as well as by a vibration sample magnetometer. Surprisingly, the saturation magnetization ( M s ) of the Fe 3 O 4 @C (~ 26.99 emu/g) was about 20% higher than that of Fe 3 O 4 nanoparticles. A rather rectangular CV curve for both the elecrophortically-deposited Fe 3 O 4 and Fe 3 O 4 @C on CF indicated the double-layer supercapacitor behavior of the samples. The synergistic effects of double shells improved the electrochemical behavior of Fe 3 O 4 @CF. The Fe 3 O 4 @C@CF composite exhibited a higher specific capacitance of ~ 412 F g −1 at scan rate of 0.05 V/s compared to the Fe 3 O 4 @CF with a value of ~ 193 F g −1 . The superb electrochemical properties of Fe 3 O 4 @C@CF confirm their potential for applications as supercapacitors in the energy storage field.
doi_str_mv 10.1007/s11664-018-6360-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2041964267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2041964267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-99b09504a04011095713bb55e9cc86d97797148c6aea90c197c2a8db45fe42053</originalsourceid><addsrcrecordid>eNp1kEtr20AQx5eSQhy3HyA3Qc7bzmgf0t4anDgphLrgBnpbVuuxo2Br1VnpkG8fGRV66mke_B_wE-Ia4QsCVF8zorVaAtbSKgsSPogFGq0k1vb3hViAsihNqcyluMr5FQAN1rgQ_f2R4sCpf0lMQxvD8fgm76hPuR1oV_wIXZJrUhv9LQZuUleou2I78BiHkamY7tX8XrcNcRFy8dgeXuRP4n3iU-giFduxJ46hD7EdEudP4uM-HDN9_juX4nl9_2v1KJ82D99Xt08yKuMG6VwDzoAOoAFxWitUTWMMuRhru3NV5SrUdbSBgoOIroplqHeNNnvSJRi1FDdzbs_pz0h58K9p5G6q9CVodFaXtppUOKsip5yZ9r7n9hT4zSP4M1g_g_UTWH8G62HylLMnT9ruQPwv-f-mdyfqetI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041964267</pqid></control><display><type>article</type><title>Electrophoretically-Deposited Nano-Fe3O4@carbon 3D Structure on Carbon Fiber as High-Performance Supercapacitors</title><source>SpringerNature Journals</source><creator>Hajalilou, Abdollah ; Etemadifar, Reza ; Abbasi-Chianeh, Vahid ; Abouzari-Lotf, Ebrahim</creator><creatorcontrib>Hajalilou, Abdollah ; Etemadifar, Reza ; Abbasi-Chianeh, Vahid ; Abouzari-Lotf, Ebrahim</creatorcontrib><description>Structural and electrochemical behaviors of electrophortically-deposited Fe 3 O 4 and Fe 3 O 4 @C nanoparticles on carbon fiber (CF) were investigated. The nanoparticles were synthesized via a green-assisted hydrothermal route. The as-prepared samples were characterized by x-ray diffraction, transmission and scanning electron microscopies, Fourier transform infrared and UV–visible spectroscopies as well as by a vibration sample magnetometer. Surprisingly, the saturation magnetization ( M s ) of the Fe 3 O 4 @C (~ 26.99 emu/g) was about 20% higher than that of Fe 3 O 4 nanoparticles. A rather rectangular CV curve for both the elecrophortically-deposited Fe 3 O 4 and Fe 3 O 4 @C on CF indicated the double-layer supercapacitor behavior of the samples. The synergistic effects of double shells improved the electrochemical behavior of Fe 3 O 4 @CF. The Fe 3 O 4 @C@CF composite exhibited a higher specific capacitance of ~ 412 F g −1 at scan rate of 0.05 V/s compared to the Fe 3 O 4 @CF with a value of ~ 193 F g −1 . The superb electrochemical properties of Fe 3 O 4 @C@CF confirm their potential for applications as supercapacitors in the energy storage field.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-018-6360-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon fibers ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electrochemical analysis ; Electronics and Microelectronics ; Energy storage ; Fourier transforms ; Instrumentation ; Iron oxides ; Magnetic saturation ; Materials Science ; Nanoparticles ; Optical and Electronic Materials ; Scanning electron microscopy ; Solid State Physics ; Supercapacitors ; X-ray diffraction</subject><ispartof>Journal of electronic materials, 2018-08, Vol.47 (8), p.4807-4812</ispartof><rights>The Minerals, Metals &amp; Materials Society 2018</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-99b09504a04011095713bb55e9cc86d97797148c6aea90c197c2a8db45fe42053</citedby><cites>FETCH-LOGICAL-c359t-99b09504a04011095713bb55e9cc86d97797148c6aea90c197c2a8db45fe42053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-018-6360-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-018-6360-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hajalilou, Abdollah</creatorcontrib><creatorcontrib>Etemadifar, Reza</creatorcontrib><creatorcontrib>Abbasi-Chianeh, Vahid</creatorcontrib><creatorcontrib>Abouzari-Lotf, Ebrahim</creatorcontrib><title>Electrophoretically-Deposited Nano-Fe3O4@carbon 3D Structure on Carbon Fiber as High-Performance Supercapacitors</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Structural and electrochemical behaviors of electrophortically-deposited Fe 3 O 4 and Fe 3 O 4 @C nanoparticles on carbon fiber (CF) were investigated. The nanoparticles were synthesized via a green-assisted hydrothermal route. The as-prepared samples were characterized by x-ray diffraction, transmission and scanning electron microscopies, Fourier transform infrared and UV–visible spectroscopies as well as by a vibration sample magnetometer. Surprisingly, the saturation magnetization ( M s ) of the Fe 3 O 4 @C (~ 26.99 emu/g) was about 20% higher than that of Fe 3 O 4 nanoparticles. A rather rectangular CV curve for both the elecrophortically-deposited Fe 3 O 4 and Fe 3 O 4 @C on CF indicated the double-layer supercapacitor behavior of the samples. The synergistic effects of double shells improved the electrochemical behavior of Fe 3 O 4 @CF. The Fe 3 O 4 @C@CF composite exhibited a higher specific capacitance of ~ 412 F g −1 at scan rate of 0.05 V/s compared to the Fe 3 O 4 @CF with a value of ~ 193 F g −1 . The superb electrochemical properties of Fe 3 O 4 @C@CF confirm their potential for applications as supercapacitors in the energy storage field.</description><subject>Carbon fibers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electrochemical analysis</subject><subject>Electronics and Microelectronics</subject><subject>Energy storage</subject><subject>Fourier transforms</subject><subject>Instrumentation</subject><subject>Iron oxides</subject><subject>Magnetic saturation</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Scanning electron microscopy</subject><subject>Solid State Physics</subject><subject>Supercapacitors</subject><subject>X-ray diffraction</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtr20AQx5eSQhy3HyA3Qc7bzmgf0t4anDgphLrgBnpbVuuxo2Br1VnpkG8fGRV66mke_B_wE-Ia4QsCVF8zorVaAtbSKgsSPogFGq0k1vb3hViAsihNqcyluMr5FQAN1rgQ_f2R4sCpf0lMQxvD8fgm76hPuR1oV_wIXZJrUhv9LQZuUleou2I78BiHkamY7tX8XrcNcRFy8dgeXuRP4n3iU-giFduxJ46hD7EdEudP4uM-HDN9_juX4nl9_2v1KJ82D99Xt08yKuMG6VwDzoAOoAFxWitUTWMMuRhru3NV5SrUdbSBgoOIroplqHeNNnvSJRi1FDdzbs_pz0h58K9p5G6q9CVodFaXtppUOKsip5yZ9r7n9hT4zSP4M1g_g_UTWH8G62HylLMnT9ruQPwv-f-mdyfqetI</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Hajalilou, Abdollah</creator><creator>Etemadifar, Reza</creator><creator>Abbasi-Chianeh, Vahid</creator><creator>Abouzari-Lotf, Ebrahim</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180801</creationdate><title>Electrophoretically-Deposited Nano-Fe3O4@carbon 3D Structure on Carbon Fiber as High-Performance Supercapacitors</title><author>Hajalilou, Abdollah ; Etemadifar, Reza ; Abbasi-Chianeh, Vahid ; Abouzari-Lotf, Ebrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-99b09504a04011095713bb55e9cc86d97797148c6aea90c197c2a8db45fe42053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon fibers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electrochemical analysis</topic><topic>Electronics and Microelectronics</topic><topic>Energy storage</topic><topic>Fourier transforms</topic><topic>Instrumentation</topic><topic>Iron oxides</topic><topic>Magnetic saturation</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Scanning electron microscopy</topic><topic>Solid State Physics</topic><topic>Supercapacitors</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hajalilou, Abdollah</creatorcontrib><creatorcontrib>Etemadifar, Reza</creatorcontrib><creatorcontrib>Abbasi-Chianeh, Vahid</creatorcontrib><creatorcontrib>Abouzari-Lotf, Ebrahim</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajalilou, Abdollah</au><au>Etemadifar, Reza</au><au>Abbasi-Chianeh, Vahid</au><au>Abouzari-Lotf, Ebrahim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrophoretically-Deposited Nano-Fe3O4@carbon 3D Structure on Carbon Fiber as High-Performance Supercapacitors</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>47</volume><issue>8</issue><spage>4807</spage><epage>4812</epage><pages>4807-4812</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Structural and electrochemical behaviors of electrophortically-deposited Fe 3 O 4 and Fe 3 O 4 @C nanoparticles on carbon fiber (CF) were investigated. The nanoparticles were synthesized via a green-assisted hydrothermal route. The as-prepared samples were characterized by x-ray diffraction, transmission and scanning electron microscopies, Fourier transform infrared and UV–visible spectroscopies as well as by a vibration sample magnetometer. Surprisingly, the saturation magnetization ( M s ) of the Fe 3 O 4 @C (~ 26.99 emu/g) was about 20% higher than that of Fe 3 O 4 nanoparticles. A rather rectangular CV curve for both the elecrophortically-deposited Fe 3 O 4 and Fe 3 O 4 @C on CF indicated the double-layer supercapacitor behavior of the samples. The synergistic effects of double shells improved the electrochemical behavior of Fe 3 O 4 @CF. The Fe 3 O 4 @C@CF composite exhibited a higher specific capacitance of ~ 412 F g −1 at scan rate of 0.05 V/s compared to the Fe 3 O 4 @CF with a value of ~ 193 F g −1 . The superb electrochemical properties of Fe 3 O 4 @C@CF confirm their potential for applications as supercapacitors in the energy storage field.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-018-6360-0</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2018-08, Vol.47 (8), p.4807-4812
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2041964267
source SpringerNature Journals
subjects Carbon fibers
Characterization and Evaluation of Materials
Chemistry and Materials Science
Electrochemical analysis
Electronics and Microelectronics
Energy storage
Fourier transforms
Instrumentation
Iron oxides
Magnetic saturation
Materials Science
Nanoparticles
Optical and Electronic Materials
Scanning electron microscopy
Solid State Physics
Supercapacitors
X-ray diffraction
title Electrophoretically-Deposited Nano-Fe3O4@carbon 3D Structure on Carbon Fiber as High-Performance Supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrophoretically-Deposited%20Nano-Fe3O4@carbon%203D%20Structure%20on%20Carbon%20Fiber%20as%20High-Performance%20Supercapacitors&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Hajalilou,%20Abdollah&rft.date=2018-08-01&rft.volume=47&rft.issue=8&rft.spage=4807&rft.epage=4812&rft.pages=4807-4812&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-018-6360-0&rft_dat=%3Cproquest_cross%3E2041964267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2041964267&rft_id=info:pmid/&rfr_iscdi=true