Monge properties, discrete convexity and applications

Starting from Monge’s mass transportation problem we review the role Monge properties play in optimization. In particular we discuss transportation problems whose cost functions fulfill a Monge property, Monge sequences, algebraic Monge properties, the recognition of permuted Monge arrays and multid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2007, Vol.176 (1), p.1-14
1. Verfasser: Burkard, Rainer E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 1
container_start_page 1
container_title European journal of operational research
container_volume 176
creator Burkard, Rainer E.
description Starting from Monge’s mass transportation problem we review the role Monge properties play in optimization. In particular we discuss transportation problems whose cost functions fulfill a Monge property, Monge sequences, algebraic Monge properties, the recognition of permuted Monge arrays and multidimensional Monge arrays and the connections between Monge properties and discrete convexity. Finally we discuss Prékopa’s recent approach using Monge arrays in bounding multivariate probability distribution functions.
doi_str_mv 10.1016/j.ejor.2005.04.050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204189837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221705008702</els_id><sourcerecordid>1155388191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-a1c30ea84491873beb916619742f8b69d0c73262a3343d5bf264b3b2873796493</originalsourceid><addsrcrecordid>eNp9kF9L5DAUxYO44Oj6BXwqgm-23vxp0oIvIq4Kyr7sPoc0vdWUmbYmnWHn2-8dR_TNwM2B8Ds3h8PYGYeCA9dXfYH9GAsBUBagCijhgC14ZUSuKw2HbAHSmFwIbo7YcUo9APCSlwtWPo_DC2ZTHCeMc8B0mbUh-YgzZn4cNvgvzNvMDW3mpmkZvJvDOKSf7EfnlglPP_SE_f119-f2IX_6ff94e_OUeyXEnDvuJaCrlKopi2ywqbnWvDZKdFWj6xa8kUILJ6WSbdl0QqtGNoJYU2tVyxN2vt9L-d7WmGbbj-s40JdWgOJVXUlDkNhDPo4pRezsFMPKxa3lYHft2N7u2rG7diwoS-2Q6WFvijih_3QgHUIx2Y2VjhtN95aGrIYk7B5ppnflyr7OK1p18RHSJe-WXXSDD-krRKVAaiWJu95zSI1tAkabfMDBYxsi-tm2Y_gu8X8TtZF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204189837</pqid></control><display><type>article</type><title>Monge properties, discrete convexity and applications</title><source>RePEc</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Burkard, Rainer E.</creator><creatorcontrib>Burkard, Rainer E.</creatorcontrib><description>Starting from Monge’s mass transportation problem we review the role Monge properties play in optimization. In particular we discuss transportation problems whose cost functions fulfill a Monge property, Monge sequences, algebraic Monge properties, the recognition of permuted Monge arrays and multidimensional Monge arrays and the connections between Monge properties and discrete convexity. Finally we discuss Prékopa’s recent approach using Monge arrays in bounding multivariate probability distribution functions.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2005.04.050</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Applied sciences ; Arrays ; Bounding probability distribution functions ; Discrete convexity ; Exact sciences and technology ; Greedy algorithm ; Monge property ; Operational research. Management science ; Optimization ; Studies ; Transportation problem ; Transportation problem (Operations research)</subject><ispartof>European journal of operational research, 2007, Vol.176 (1), p.1-14</ispartof><rights>2005 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jan 1, 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-a1c30ea84491873beb916619742f8b69d0c73262a3343d5bf264b3b2873796493</citedby><cites>FETCH-LOGICAL-c422t-a1c30ea84491873beb916619742f8b69d0c73262a3343d5bf264b3b2873796493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2005.04.050$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18403643$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a176_3ay_3a2007_3ai_3a1_3ap_3a1-14.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Burkard, Rainer E.</creatorcontrib><title>Monge properties, discrete convexity and applications</title><title>European journal of operational research</title><description>Starting from Monge’s mass transportation problem we review the role Monge properties play in optimization. In particular we discuss transportation problems whose cost functions fulfill a Monge property, Monge sequences, algebraic Monge properties, the recognition of permuted Monge arrays and multidimensional Monge arrays and the connections between Monge properties and discrete convexity. Finally we discuss Prékopa’s recent approach using Monge arrays in bounding multivariate probability distribution functions.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Arrays</subject><subject>Bounding probability distribution functions</subject><subject>Discrete convexity</subject><subject>Exact sciences and technology</subject><subject>Greedy algorithm</subject><subject>Monge property</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Studies</subject><subject>Transportation problem</subject><subject>Transportation problem (Operations research)</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kF9L5DAUxYO44Oj6BXwqgm-23vxp0oIvIq4Kyr7sPoc0vdWUmbYmnWHn2-8dR_TNwM2B8Ds3h8PYGYeCA9dXfYH9GAsBUBagCijhgC14ZUSuKw2HbAHSmFwIbo7YcUo9APCSlwtWPo_DC2ZTHCeMc8B0mbUh-YgzZn4cNvgvzNvMDW3mpmkZvJvDOKSf7EfnlglPP_SE_f119-f2IX_6ff94e_OUeyXEnDvuJaCrlKopi2ywqbnWvDZKdFWj6xa8kUILJ6WSbdl0QqtGNoJYU2tVyxN2vt9L-d7WmGbbj-s40JdWgOJVXUlDkNhDPo4pRezsFMPKxa3lYHft2N7u2rG7diwoS-2Q6WFvijih_3QgHUIx2Y2VjhtN95aGrIYk7B5ppnflyr7OK1p18RHSJe-WXXSDD-krRKVAaiWJu95zSI1tAkabfMDBYxsi-tm2Y_gu8X8TtZF0</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Burkard, Rainer E.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2007</creationdate><title>Monge properties, discrete convexity and applications</title><author>Burkard, Rainer E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-a1c30ea84491873beb916619742f8b69d0c73262a3343d5bf264b3b2873796493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Arrays</topic><topic>Bounding probability distribution functions</topic><topic>Discrete convexity</topic><topic>Exact sciences and technology</topic><topic>Greedy algorithm</topic><topic>Monge property</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Studies</topic><topic>Transportation problem</topic><topic>Transportation problem (Operations research)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burkard, Rainer E.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burkard, Rainer E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monge properties, discrete convexity and applications</atitle><jtitle>European journal of operational research</jtitle><date>2007</date><risdate>2007</risdate><volume>176</volume><issue>1</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>Starting from Monge’s mass transportation problem we review the role Monge properties play in optimization. In particular we discuss transportation problems whose cost functions fulfill a Monge property, Monge sequences, algebraic Monge properties, the recognition of permuted Monge arrays and multidimensional Monge arrays and the connections between Monge properties and discrete convexity. Finally we discuss Prékopa’s recent approach using Monge arrays in bounding multivariate probability distribution functions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2005.04.050</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2007, Vol.176 (1), p.1-14
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204189837
source RePEc; ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Applied sciences
Arrays
Bounding probability distribution functions
Discrete convexity
Exact sciences and technology
Greedy algorithm
Monge property
Operational research. Management science
Optimization
Studies
Transportation problem
Transportation problem (Operations research)
title Monge properties, discrete convexity and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monge%20properties,%20discrete%20convexity%20and%20applications&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Burkard,%20Rainer%20E.&rft.date=2007&rft.volume=176&rft.issue=1&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2005.04.050&rft_dat=%3Cproquest_cross%3E1155388191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204189837&rft_id=info:pmid/&rft_els_id=S0377221705008702&rfr_iscdi=true