The partial sum criterion for Steiner trees in graphs and shortest paths

The partial sum criterion with parameter p adds up the p largest weights in the solution, giving the criterion value to be minimized. For p = 1 the criterion is the bottleneck or minmax criterion. For the minmax Steiner tree problem in graphs we describe an O(|E|) algorithm with E being the set of e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 1997-02, Vol.97 (1), p.172-182
Hauptverfasser: Duin, C.W., Volgenant, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182
container_issue 1
container_start_page 172
container_title European journal of operational research
container_volume 97
creator Duin, C.W.
Volgenant, A.
description The partial sum criterion with parameter p adds up the p largest weights in the solution, giving the criterion value to be minimized. For p = 1 the criterion is the bottleneck or minmax criterion. For the minmax Steiner tree problem in graphs we describe an O(|E|) algorithm with E being the set of edges in the problem graph. The algorithm unifies two existing algorithms, one of them solves the bottleneck shortest path problem and the other the bottleneck spanning tree problem. For the shortest path problem we consider the criterion for arbitrary values of p, defining it for solutions with less than p edges as the total sum. For an undirected graph with n nodes we present an O( n 3) algorithm to determine, simultaneously, partial sum shortest paths between all pairs of nodes and for all values of the parameter p. For the 2-sum shortest path problem and one pair of nodes we give an O(|E| + n log n) algorithm. By exploiting this algorithm we obtain the same complexity for the 2-sum Steiner tree problem in graphs. Furthermore, we discuss the complexity of related problems and alternative partial sum criteria.
doi_str_mv 10.1016/S0377-2217(96)00113-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204183455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221796001130</els_id><sourcerecordid>45295718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-822edbaa932020876476f7760658293bfe34bdc6f68d32a043def362537d58853</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BCF40kM1f9okPYmIuorgQT2HbDu1Wdy2TrIL--1Nd2WvBiYzh_feDD9Czjm75oyrm3cmtc6E4PqyVFeMcS4zdkAm3GiRKaPYIZnsJcfkJIQFS6qCFxMy-2iBDg6jd980rJa0Qh8Bfd_Rpkf6HsF3gDQiQKC-o1_ohjZQ19U0tD1GCDHZYxtOyVHjvgOc_fUp-Xx8-LifZa9vT8_3d69ZlUsZMyME1HPnSimYYEarXKtGa8VUYUQp5w3IfF5XqlGmlsKxXNbQSCUKqevCmEJOycUud8D-Z5XW20W_wi6ttILl3Mi8GEXFTlRhHwJCYwf0S4cby5kdmdktMzsCsaWyW2aWJd_LzocwQLU3QXqLHiHYtZWu1OnbpOLldvTjmGoYuxaWG2HbuExht7swSDjWHtCGykNXQe0Rqmjr3v9zzi-_coss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204183455</pqid></control><display><type>article</type><title>The partial sum criterion for Steiner trees in graphs and shortest paths</title><source>RePEc</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Duin, C.W. ; Volgenant, A.</creator><creatorcontrib>Duin, C.W. ; Volgenant, A.</creatorcontrib><description>The partial sum criterion with parameter p adds up the p largest weights in the solution, giving the criterion value to be minimized. For p = 1 the criterion is the bottleneck or minmax criterion. For the minmax Steiner tree problem in graphs we describe an O(|E|) algorithm with E being the set of edges in the problem graph. The algorithm unifies two existing algorithms, one of them solves the bottleneck shortest path problem and the other the bottleneck spanning tree problem. For the shortest path problem we consider the criterion for arbitrary values of p, defining it for solutions with less than p edges as the total sum. For an undirected graph with n nodes we present an O( n 3) algorithm to determine, simultaneously, partial sum shortest paths between all pairs of nodes and for all values of the parameter p. For the 2-sum shortest path problem and one pair of nodes we give an O(|E| + n log n) algorithm. By exploiting this algorithm we obtain the same complexity for the 2-sum Steiner tree problem in graphs. Furthermore, we discuss the complexity of related problems and alternative partial sum criteria.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/S0377-2217(96)00113-0</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Graphs ; Mathematical programming ; Network programming ; Operations research ; Partial sum criterion ; Shortest path ; Steiner tree in graph ; Studies</subject><ispartof>European journal of operational research, 1997-02, Vol.97 (1), p.172-182</ispartof><rights>1997</rights><rights>Copyright Elsevier Sequoia S.A. Feb 16, 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-822edbaa932020876476f7760658293bfe34bdc6f68d32a043def362537d58853</citedby><cites>FETCH-LOGICAL-c433t-822edbaa932020876476f7760658293bfe34bdc6f68d32a043def362537d58853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0377-2217(96)00113-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4006,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a97_3ay_3a1997_3ai_3a1_3ap_3a172-182.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Duin, C.W.</creatorcontrib><creatorcontrib>Volgenant, A.</creatorcontrib><title>The partial sum criterion for Steiner trees in graphs and shortest paths</title><title>European journal of operational research</title><description>The partial sum criterion with parameter p adds up the p largest weights in the solution, giving the criterion value to be minimized. For p = 1 the criterion is the bottleneck or minmax criterion. For the minmax Steiner tree problem in graphs we describe an O(|E|) algorithm with E being the set of edges in the problem graph. The algorithm unifies two existing algorithms, one of them solves the bottleneck shortest path problem and the other the bottleneck spanning tree problem. For the shortest path problem we consider the criterion for arbitrary values of p, defining it for solutions with less than p edges as the total sum. For an undirected graph with n nodes we present an O( n 3) algorithm to determine, simultaneously, partial sum shortest paths between all pairs of nodes and for all values of the parameter p. For the 2-sum shortest path problem and one pair of nodes we give an O(|E| + n log n) algorithm. By exploiting this algorithm we obtain the same complexity for the 2-sum Steiner tree problem in graphs. Furthermore, we discuss the complexity of related problems and alternative partial sum criteria.</description><subject>Algorithms</subject><subject>Graphs</subject><subject>Mathematical programming</subject><subject>Network programming</subject><subject>Operations research</subject><subject>Partial sum criterion</subject><subject>Shortest path</subject><subject>Steiner tree in graph</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkE9LxDAQxYMouK5-BCF40kM1f9okPYmIuorgQT2HbDu1Wdy2TrIL--1Nd2WvBiYzh_feDD9Czjm75oyrm3cmtc6E4PqyVFeMcS4zdkAm3GiRKaPYIZnsJcfkJIQFS6qCFxMy-2iBDg6jd980rJa0Qh8Bfd_Rpkf6HsF3gDQiQKC-o1_ohjZQ19U0tD1GCDHZYxtOyVHjvgOc_fUp-Xx8-LifZa9vT8_3d69ZlUsZMyME1HPnSimYYEarXKtGa8VUYUQp5w3IfF5XqlGmlsKxXNbQSCUKqevCmEJOycUud8D-Z5XW20W_wi6ttILl3Mi8GEXFTlRhHwJCYwf0S4cby5kdmdktMzsCsaWyW2aWJd_LzocwQLU3QXqLHiHYtZWu1OnbpOLldvTjmGoYuxaWG2HbuExht7swSDjWHtCGykNXQe0Rqmjr3v9zzi-_coss</recordid><startdate>19970216</startdate><enddate>19970216</enddate><creator>Duin, C.W.</creator><creator>Volgenant, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19970216</creationdate><title>The partial sum criterion for Steiner trees in graphs and shortest paths</title><author>Duin, C.W. ; Volgenant, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-822edbaa932020876476f7760658293bfe34bdc6f68d32a043def362537d58853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithms</topic><topic>Graphs</topic><topic>Mathematical programming</topic><topic>Network programming</topic><topic>Operations research</topic><topic>Partial sum criterion</topic><topic>Shortest path</topic><topic>Steiner tree in graph</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duin, C.W.</creatorcontrib><creatorcontrib>Volgenant, A.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duin, C.W.</au><au>Volgenant, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The partial sum criterion for Steiner trees in graphs and shortest paths</atitle><jtitle>European journal of operational research</jtitle><date>1997-02-16</date><risdate>1997</risdate><volume>97</volume><issue>1</issue><spage>172</spage><epage>182</epage><pages>172-182</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>The partial sum criterion with parameter p adds up the p largest weights in the solution, giving the criterion value to be minimized. For p = 1 the criterion is the bottleneck or minmax criterion. For the minmax Steiner tree problem in graphs we describe an O(|E|) algorithm with E being the set of edges in the problem graph. The algorithm unifies two existing algorithms, one of them solves the bottleneck shortest path problem and the other the bottleneck spanning tree problem. For the shortest path problem we consider the criterion for arbitrary values of p, defining it for solutions with less than p edges as the total sum. For an undirected graph with n nodes we present an O( n 3) algorithm to determine, simultaneously, partial sum shortest paths between all pairs of nodes and for all values of the parameter p. For the 2-sum shortest path problem and one pair of nodes we give an O(|E| + n log n) algorithm. By exploiting this algorithm we obtain the same complexity for the 2-sum Steiner tree problem in graphs. Furthermore, we discuss the complexity of related problems and alternative partial sum criteria.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-2217(96)00113-0</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 1997-02, Vol.97 (1), p.172-182
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204183455
source RePEc; ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Graphs
Mathematical programming
Network programming
Operations research
Partial sum criterion
Shortest path
Steiner tree in graph
Studies
title The partial sum criterion for Steiner trees in graphs and shortest paths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20partial%20sum%20criterion%20for%20Steiner%20trees%20in%20graphs%20and%20shortest%20paths&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Duin,%20C.W.&rft.date=1997-02-16&rft.volume=97&rft.issue=1&rft.spage=172&rft.epage=182&rft.pages=172-182&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/S0377-2217(96)00113-0&rft_dat=%3Cproquest_cross%3E45295718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204183455&rft_id=info:pmid/&rft_els_id=S0377221796001130&rfr_iscdi=true