A parameter-free dynamic diffusion method for advection–diffusion–reaction problems

In this paper, we present a two-scale finite element formulation, named Dynamic Diffusion (DD), for advection–diffusion–reaction problems. By decomposing the velocity field in coarse and subgrid scales, the latter is used to determine the smallest amount of artificial diffusion to minimize the coars...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2018-01, Vol.75 (1), p.307-321
Hauptverfasser: Valli, Andrea M.P., Almeida, Regina C., Santos, Isaac P., Catabriga, Lucia, Malta, Sandra M.C., Coutinho, Alvaro L.G.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 321
container_issue 1
container_start_page 307
container_title Computers & mathematics with applications (1987)
container_volume 75
creator Valli, Andrea M.P.
Almeida, Regina C.
Santos, Isaac P.
Catabriga, Lucia
Malta, Sandra M.C.
Coutinho, Alvaro L.G.A.
description In this paper, we present a two-scale finite element formulation, named Dynamic Diffusion (DD), for advection–diffusion–reaction problems. By decomposing the velocity field in coarse and subgrid scales, the latter is used to determine the smallest amount of artificial diffusion to minimize the coarse-scale kinetic energy. This is done locally and dynamically, by imposing some constraints on the resolved scale solution, yielding a parameter-free consistent method. The subgrid scale space is defined by using bubble functions, whose degrees of freedom are locally eliminated in favor of the degrees of freedom that live on the resolved scales. Convergence tests on a two-dimensional example are reported, yielding optimal rates. In addition, numerical experiments show that DD method is robust for a wide scope of application problems.
doi_str_mv 10.1016/j.camwa.2017.09.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2041753642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122117305680</els_id><sourcerecordid>2041753642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-f4afdd4eedfe956f161a935a947302a915ad0a5d208b7fa467a24f68df67663</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAjaRWCeM7cRJFiyqipdUiQVILK1pPBaOmqTYbVF33IEbchLcFrFkNaOZ_5_Hx9glh4wDV9dt1mD3gZkAXmZQZyDgiI14Vcq0VKo6ZiOo6irlQvBTdhZCCwC5FDBir5NkiR47WpFPrSdKzLbHzjWJcdaugxv6JDbfBpPYwSdoNtSsYvH78-tPEHNPuC8nSz_MF9SFc3ZicRHo4jeO2fPd7cv0IZ093T9OJ7O0kZKvUpujNSYnMpbqQlmuONaywDovJQiseYEGsDACqnlpMVclityqylgVH5NjdnWYGte-rymsdDusfR8XagE5LwupchFV8qBq_BCCJ6uX3nXot5qD3vHTrd7z0zt-Gmod-UXXzcFF8fyNI69D46hvyDgfGWgzuH_9P6trfWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041753642</pqid></control><display><type>article</type><title>A parameter-free dynamic diffusion method for advection–diffusion–reaction problems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Valli, Andrea M.P. ; Almeida, Regina C. ; Santos, Isaac P. ; Catabriga, Lucia ; Malta, Sandra M.C. ; Coutinho, Alvaro L.G.A.</creator><creatorcontrib>Valli, Andrea M.P. ; Almeida, Regina C. ; Santos, Isaac P. ; Catabriga, Lucia ; Malta, Sandra M.C. ; Coutinho, Alvaro L.G.A.</creatorcontrib><description>In this paper, we present a two-scale finite element formulation, named Dynamic Diffusion (DD), for advection–diffusion–reaction problems. By decomposing the velocity field in coarse and subgrid scales, the latter is used to determine the smallest amount of artificial diffusion to minimize the coarse-scale kinetic energy. This is done locally and dynamically, by imposing some constraints on the resolved scale solution, yielding a parameter-free consistent method. The subgrid scale space is defined by using bubble functions, whose degrees of freedom are locally eliminated in favor of the degrees of freedom that live on the resolved scales. Convergence tests on a two-dimensional example are reported, yielding optimal rates. In addition, numerical experiments show that DD method is robust for a wide scope of application problems.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2017.09.020</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Advection ; Advection–diffusion–reaction equations ; Bubble functions ; Bubbles ; Decomposition reactions ; Degrees of freedom ; Diffusion ; Dynamic Diffusion method ; Energy conservation ; Finite element analysis ; Finite element method ; Kinetic energy ; Multiscale finite element formulation ; Parameters ; Robustness (mathematics) ; Velocity distribution</subject><ispartof>Computers &amp; mathematics with applications (1987), 2018-01, Vol.75 (1), p.307-321</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-f4afdd4eedfe956f161a935a947302a915ad0a5d208b7fa467a24f68df67663</citedby><cites>FETCH-LOGICAL-c331t-f4afdd4eedfe956f161a935a947302a915ad0a5d208b7fa467a24f68df67663</cites><orcidid>0000-0001-8524-0393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2017.09.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Valli, Andrea M.P.</creatorcontrib><creatorcontrib>Almeida, Regina C.</creatorcontrib><creatorcontrib>Santos, Isaac P.</creatorcontrib><creatorcontrib>Catabriga, Lucia</creatorcontrib><creatorcontrib>Malta, Sandra M.C.</creatorcontrib><creatorcontrib>Coutinho, Alvaro L.G.A.</creatorcontrib><title>A parameter-free dynamic diffusion method for advection–diffusion–reaction problems</title><title>Computers &amp; mathematics with applications (1987)</title><description>In this paper, we present a two-scale finite element formulation, named Dynamic Diffusion (DD), for advection–diffusion–reaction problems. By decomposing the velocity field in coarse and subgrid scales, the latter is used to determine the smallest amount of artificial diffusion to minimize the coarse-scale kinetic energy. This is done locally and dynamically, by imposing some constraints on the resolved scale solution, yielding a parameter-free consistent method. The subgrid scale space is defined by using bubble functions, whose degrees of freedom are locally eliminated in favor of the degrees of freedom that live on the resolved scales. Convergence tests on a two-dimensional example are reported, yielding optimal rates. In addition, numerical experiments show that DD method is robust for a wide scope of application problems.</description><subject>Advection</subject><subject>Advection–diffusion–reaction equations</subject><subject>Bubble functions</subject><subject>Bubbles</subject><subject>Decomposition reactions</subject><subject>Degrees of freedom</subject><subject>Diffusion</subject><subject>Dynamic Diffusion method</subject><subject>Energy conservation</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Kinetic energy</subject><subject>Multiscale finite element formulation</subject><subject>Parameters</subject><subject>Robustness (mathematics)</subject><subject>Velocity distribution</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAjaRWCeM7cRJFiyqipdUiQVILK1pPBaOmqTYbVF33IEbchLcFrFkNaOZ_5_Hx9glh4wDV9dt1mD3gZkAXmZQZyDgiI14Vcq0VKo6ZiOo6irlQvBTdhZCCwC5FDBir5NkiR47WpFPrSdKzLbHzjWJcdaugxv6JDbfBpPYwSdoNtSsYvH78-tPEHNPuC8nSz_MF9SFc3ZicRHo4jeO2fPd7cv0IZ093T9OJ7O0kZKvUpujNSYnMpbqQlmuONaywDovJQiseYEGsDACqnlpMVclityqylgVH5NjdnWYGte-rymsdDusfR8XagE5LwupchFV8qBq_BCCJ6uX3nXot5qD3vHTrd7z0zt-Gmod-UXXzcFF8fyNI69D46hvyDgfGWgzuH_9P6trfWc</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Valli, Andrea M.P.</creator><creator>Almeida, Regina C.</creator><creator>Santos, Isaac P.</creator><creator>Catabriga, Lucia</creator><creator>Malta, Sandra M.C.</creator><creator>Coutinho, Alvaro L.G.A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8524-0393</orcidid></search><sort><creationdate>20180101</creationdate><title>A parameter-free dynamic diffusion method for advection–diffusion–reaction problems</title><author>Valli, Andrea M.P. ; Almeida, Regina C. ; Santos, Isaac P. ; Catabriga, Lucia ; Malta, Sandra M.C. ; Coutinho, Alvaro L.G.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-f4afdd4eedfe956f161a935a947302a915ad0a5d208b7fa467a24f68df67663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Advection</topic><topic>Advection–diffusion–reaction equations</topic><topic>Bubble functions</topic><topic>Bubbles</topic><topic>Decomposition reactions</topic><topic>Degrees of freedom</topic><topic>Diffusion</topic><topic>Dynamic Diffusion method</topic><topic>Energy conservation</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Kinetic energy</topic><topic>Multiscale finite element formulation</topic><topic>Parameters</topic><topic>Robustness (mathematics)</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valli, Andrea M.P.</creatorcontrib><creatorcontrib>Almeida, Regina C.</creatorcontrib><creatorcontrib>Santos, Isaac P.</creatorcontrib><creatorcontrib>Catabriga, Lucia</creatorcontrib><creatorcontrib>Malta, Sandra M.C.</creatorcontrib><creatorcontrib>Coutinho, Alvaro L.G.A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valli, Andrea M.P.</au><au>Almeida, Regina C.</au><au>Santos, Isaac P.</au><au>Catabriga, Lucia</au><au>Malta, Sandra M.C.</au><au>Coutinho, Alvaro L.G.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parameter-free dynamic diffusion method for advection–diffusion–reaction problems</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>75</volume><issue>1</issue><spage>307</spage><epage>321</epage><pages>307-321</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, we present a two-scale finite element formulation, named Dynamic Diffusion (DD), for advection–diffusion–reaction problems. By decomposing the velocity field in coarse and subgrid scales, the latter is used to determine the smallest amount of artificial diffusion to minimize the coarse-scale kinetic energy. This is done locally and dynamically, by imposing some constraints on the resolved scale solution, yielding a parameter-free consistent method. The subgrid scale space is defined by using bubble functions, whose degrees of freedom are locally eliminated in favor of the degrees of freedom that live on the resolved scales. Convergence tests on a two-dimensional example are reported, yielding optimal rates. In addition, numerical experiments show that DD method is robust for a wide scope of application problems.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2017.09.020</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8524-0393</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2018-01, Vol.75 (1), p.307-321
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_journals_2041753642
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Advection
Advection–diffusion–reaction equations
Bubble functions
Bubbles
Decomposition reactions
Degrees of freedom
Diffusion
Dynamic Diffusion method
Energy conservation
Finite element analysis
Finite element method
Kinetic energy
Multiscale finite element formulation
Parameters
Robustness (mathematics)
Velocity distribution
title A parameter-free dynamic diffusion method for advection–diffusion–reaction problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parameter-free%20dynamic%20diffusion%20method%20for%20advection%E2%80%93diffusion%E2%80%93reaction%20problems&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Valli,%20Andrea%20M.P.&rft.date=2018-01-01&rft.volume=75&rft.issue=1&rft.spage=307&rft.epage=321&rft.pages=307-321&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2017.09.020&rft_dat=%3Cproquest_cross%3E2041753642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2041753642&rft_id=info:pmid/&rft_els_id=S0898122117305680&rfr_iscdi=true