A parameter-free dynamic diffusion method for advection–diffusion–reaction problems
In this paper, we present a two-scale finite element formulation, named Dynamic Diffusion (DD), for advection–diffusion–reaction problems. By decomposing the velocity field in coarse and subgrid scales, the latter is used to determine the smallest amount of artificial diffusion to minimize the coars...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2018-01, Vol.75 (1), p.307-321 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 321 |
---|---|
container_issue | 1 |
container_start_page | 307 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 75 |
creator | Valli, Andrea M.P. Almeida, Regina C. Santos, Isaac P. Catabriga, Lucia Malta, Sandra M.C. Coutinho, Alvaro L.G.A. |
description | In this paper, we present a two-scale finite element formulation, named Dynamic Diffusion (DD), for advection–diffusion–reaction problems. By decomposing the velocity field in coarse and subgrid scales, the latter is used to determine the smallest amount of artificial diffusion to minimize the coarse-scale kinetic energy. This is done locally and dynamically, by imposing some constraints on the resolved scale solution, yielding a parameter-free consistent method. The subgrid scale space is defined by using bubble functions, whose degrees of freedom are locally eliminated in favor of the degrees of freedom that live on the resolved scales. Convergence tests on a two-dimensional example are reported, yielding optimal rates. In addition, numerical experiments show that DD method is robust for a wide scope of application problems. |
doi_str_mv | 10.1016/j.camwa.2017.09.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2041753642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122117305680</els_id><sourcerecordid>2041753642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-f4afdd4eedfe956f161a935a947302a915ad0a5d208b7fa467a24f68df67663</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAjaRWCeM7cRJFiyqipdUiQVILK1pPBaOmqTYbVF33IEbchLcFrFkNaOZ_5_Hx9glh4wDV9dt1mD3gZkAXmZQZyDgiI14Vcq0VKo6ZiOo6irlQvBTdhZCCwC5FDBir5NkiR47WpFPrSdKzLbHzjWJcdaugxv6JDbfBpPYwSdoNtSsYvH78-tPEHNPuC8nSz_MF9SFc3ZicRHo4jeO2fPd7cv0IZ093T9OJ7O0kZKvUpujNSYnMpbqQlmuONaywDovJQiseYEGsDACqnlpMVclityqylgVH5NjdnWYGte-rymsdDusfR8XagE5LwupchFV8qBq_BCCJ6uX3nXot5qD3vHTrd7z0zt-Gmod-UXXzcFF8fyNI69D46hvyDgfGWgzuH_9P6trfWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041753642</pqid></control><display><type>article</type><title>A parameter-free dynamic diffusion method for advection–diffusion–reaction problems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Valli, Andrea M.P. ; Almeida, Regina C. ; Santos, Isaac P. ; Catabriga, Lucia ; Malta, Sandra M.C. ; Coutinho, Alvaro L.G.A.</creator><creatorcontrib>Valli, Andrea M.P. ; Almeida, Regina C. ; Santos, Isaac P. ; Catabriga, Lucia ; Malta, Sandra M.C. ; Coutinho, Alvaro L.G.A.</creatorcontrib><description>In this paper, we present a two-scale finite element formulation, named Dynamic Diffusion (DD), for advection–diffusion–reaction problems. By decomposing the velocity field in coarse and subgrid scales, the latter is used to determine the smallest amount of artificial diffusion to minimize the coarse-scale kinetic energy. This is done locally and dynamically, by imposing some constraints on the resolved scale solution, yielding a parameter-free consistent method. The subgrid scale space is defined by using bubble functions, whose degrees of freedom are locally eliminated in favor of the degrees of freedom that live on the resolved scales. Convergence tests on a two-dimensional example are reported, yielding optimal rates. In addition, numerical experiments show that DD method is robust for a wide scope of application problems.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2017.09.020</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Advection ; Advection–diffusion–reaction equations ; Bubble functions ; Bubbles ; Decomposition reactions ; Degrees of freedom ; Diffusion ; Dynamic Diffusion method ; Energy conservation ; Finite element analysis ; Finite element method ; Kinetic energy ; Multiscale finite element formulation ; Parameters ; Robustness (mathematics) ; Velocity distribution</subject><ispartof>Computers & mathematics with applications (1987), 2018-01, Vol.75 (1), p.307-321</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-f4afdd4eedfe956f161a935a947302a915ad0a5d208b7fa467a24f68df67663</citedby><cites>FETCH-LOGICAL-c331t-f4afdd4eedfe956f161a935a947302a915ad0a5d208b7fa467a24f68df67663</cites><orcidid>0000-0001-8524-0393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2017.09.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Valli, Andrea M.P.</creatorcontrib><creatorcontrib>Almeida, Regina C.</creatorcontrib><creatorcontrib>Santos, Isaac P.</creatorcontrib><creatorcontrib>Catabriga, Lucia</creatorcontrib><creatorcontrib>Malta, Sandra M.C.</creatorcontrib><creatorcontrib>Coutinho, Alvaro L.G.A.</creatorcontrib><title>A parameter-free dynamic diffusion method for advection–diffusion–reaction problems</title><title>Computers & mathematics with applications (1987)</title><description>In this paper, we present a two-scale finite element formulation, named Dynamic Diffusion (DD), for advection–diffusion–reaction problems. By decomposing the velocity field in coarse and subgrid scales, the latter is used to determine the smallest amount of artificial diffusion to minimize the coarse-scale kinetic energy. This is done locally and dynamically, by imposing some constraints on the resolved scale solution, yielding a parameter-free consistent method. The subgrid scale space is defined by using bubble functions, whose degrees of freedom are locally eliminated in favor of the degrees of freedom that live on the resolved scales. Convergence tests on a two-dimensional example are reported, yielding optimal rates. In addition, numerical experiments show that DD method is robust for a wide scope of application problems.</description><subject>Advection</subject><subject>Advection–diffusion–reaction equations</subject><subject>Bubble functions</subject><subject>Bubbles</subject><subject>Decomposition reactions</subject><subject>Degrees of freedom</subject><subject>Diffusion</subject><subject>Dynamic Diffusion method</subject><subject>Energy conservation</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Kinetic energy</subject><subject>Multiscale finite element formulation</subject><subject>Parameters</subject><subject>Robustness (mathematics)</subject><subject>Velocity distribution</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAjaRWCeM7cRJFiyqipdUiQVILK1pPBaOmqTYbVF33IEbchLcFrFkNaOZ_5_Hx9glh4wDV9dt1mD3gZkAXmZQZyDgiI14Vcq0VKo6ZiOo6irlQvBTdhZCCwC5FDBir5NkiR47WpFPrSdKzLbHzjWJcdaugxv6JDbfBpPYwSdoNtSsYvH78-tPEHNPuC8nSz_MF9SFc3ZicRHo4jeO2fPd7cv0IZ093T9OJ7O0kZKvUpujNSYnMpbqQlmuONaywDovJQiseYEGsDACqnlpMVclityqylgVH5NjdnWYGte-rymsdDusfR8XagE5LwupchFV8qBq_BCCJ6uX3nXot5qD3vHTrd7z0zt-Gmod-UXXzcFF8fyNI69D46hvyDgfGWgzuH_9P6trfWc</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Valli, Andrea M.P.</creator><creator>Almeida, Regina C.</creator><creator>Santos, Isaac P.</creator><creator>Catabriga, Lucia</creator><creator>Malta, Sandra M.C.</creator><creator>Coutinho, Alvaro L.G.A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8524-0393</orcidid></search><sort><creationdate>20180101</creationdate><title>A parameter-free dynamic diffusion method for advection–diffusion–reaction problems</title><author>Valli, Andrea M.P. ; Almeida, Regina C. ; Santos, Isaac P. ; Catabriga, Lucia ; Malta, Sandra M.C. ; Coutinho, Alvaro L.G.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-f4afdd4eedfe956f161a935a947302a915ad0a5d208b7fa467a24f68df67663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Advection</topic><topic>Advection–diffusion–reaction equations</topic><topic>Bubble functions</topic><topic>Bubbles</topic><topic>Decomposition reactions</topic><topic>Degrees of freedom</topic><topic>Diffusion</topic><topic>Dynamic Diffusion method</topic><topic>Energy conservation</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Kinetic energy</topic><topic>Multiscale finite element formulation</topic><topic>Parameters</topic><topic>Robustness (mathematics)</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valli, Andrea M.P.</creatorcontrib><creatorcontrib>Almeida, Regina C.</creatorcontrib><creatorcontrib>Santos, Isaac P.</creatorcontrib><creatorcontrib>Catabriga, Lucia</creatorcontrib><creatorcontrib>Malta, Sandra M.C.</creatorcontrib><creatorcontrib>Coutinho, Alvaro L.G.A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valli, Andrea M.P.</au><au>Almeida, Regina C.</au><au>Santos, Isaac P.</au><au>Catabriga, Lucia</au><au>Malta, Sandra M.C.</au><au>Coutinho, Alvaro L.G.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parameter-free dynamic diffusion method for advection–diffusion–reaction problems</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>75</volume><issue>1</issue><spage>307</spage><epage>321</epage><pages>307-321</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, we present a two-scale finite element formulation, named Dynamic Diffusion (DD), for advection–diffusion–reaction problems. By decomposing the velocity field in coarse and subgrid scales, the latter is used to determine the smallest amount of artificial diffusion to minimize the coarse-scale kinetic energy. This is done locally and dynamically, by imposing some constraints on the resolved scale solution, yielding a parameter-free consistent method. The subgrid scale space is defined by using bubble functions, whose degrees of freedom are locally eliminated in favor of the degrees of freedom that live on the resolved scales. Convergence tests on a two-dimensional example are reported, yielding optimal rates. In addition, numerical experiments show that DD method is robust for a wide scope of application problems.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2017.09.020</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8524-0393</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2018-01, Vol.75 (1), p.307-321 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_journals_2041753642 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Advection Advection–diffusion–reaction equations Bubble functions Bubbles Decomposition reactions Degrees of freedom Diffusion Dynamic Diffusion method Energy conservation Finite element analysis Finite element method Kinetic energy Multiscale finite element formulation Parameters Robustness (mathematics) Velocity distribution |
title | A parameter-free dynamic diffusion method for advection–diffusion–reaction problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parameter-free%20dynamic%20diffusion%20method%20for%20advection%E2%80%93diffusion%E2%80%93reaction%20problems&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Valli,%20Andrea%20M.P.&rft.date=2018-01-01&rft.volume=75&rft.issue=1&rft.spage=307&rft.epage=321&rft.pages=307-321&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2017.09.020&rft_dat=%3Cproquest_cross%3E2041753642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2041753642&rft_id=info:pmid/&rft_els_id=S0898122117305680&rfr_iscdi=true |