Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input
•A piezoelectric energy harvester used for human motion energy harvesting.•Energy harvesting capability of using a linear harvester in random vibration input.•Performance tested in real-life activities in hand-arm and head motions.•Output power enough to drive medical sensors in real applications.•G...
Gespeichert in:
Veröffentlicht in: | Mechanical systems and signal processing 2018-06, Vol.106, p.303-318 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | |
container_start_page | 303 |
container_title | Mechanical systems and signal processing |
container_volume | 106 |
creator | Bai, Yang Tofel, Pavel Hadas, Zdenek Smilek, Jan Losak, Petr Skarvada, Pavel Macku, Robert |
description | •A piezoelectric energy harvester used for human motion energy harvesting.•Energy harvesting capability of using a linear harvester in random vibration input.•Performance tested in real-life activities in hand-arm and head motions.•Output power enough to drive medical sensors in real applications.•Guidance to help designers to balance the choice of a linear and nonlinear systems in energy harvesters.
The capability of using a linear kinetic energy harvester – A cantilever structured piezoelectric energy harvester – to harvest human motions in the real-life activities is investigated. The whole loop of the design, simulation, fabrication and test of the energy harvester is presented. With the smart wristband/watch sized energy harvester, a root mean square of the output power of 50 μW is obtained from the real-life hand-arm motion in human’s daily life. Such a power is enough to make some low power consumption sensors to be self-powered. This paper provides a good and reliable comparison to those with nonlinear structures. It also helps the designers to consider whether to choose a nonlinear structure or not in a particular energy harvester based on different application scenarios. |
doi_str_mv | 10.1016/j.ymssp.2018.01.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2041753465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327018300141</els_id><sourcerecordid>2041753465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-f095b48a2aece8c61b5f4ecc1a82425de2a4e37067e9d1e54d2e0e598be87b1c3</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq0KJBboL-BiqeekYydxnEMPFeoHEhIXOFuOMwGvduN07ARtJf57vV3OnObyvPPOPIzdCCgFCPV1Wx72Mc6lBKFLECWA-sQ2AjpVCCnUGduA1rqoZAsX7DLGLQB0NagNe7ubVozJP9vkw8TDyC13dkp-hysSj4kWlxbCgc8e_wbcoUvkHccJ6fnAXywd45lcYmbGQPwVLdl-h3zA1TuM_NWnF052GsKer76nU5Of5iVds_PR7iJ-fp9X7Onnj8fb38X9w6-72-_3hatalYoRuqavtZUWHWqnRN-MNTonrJa1bAaUtsaqBdViNwhs6kEiYNPpHnXbC1ddsS-nvTOFP0s-2GzDQlOuNBJq0TZVrZpMVSfKUYiRcDQz-b2lgxFgjp7N1vz3bI6eDQiTPefUt1MK8wOrRzLReZwcDp6yLDME_2H-H4aHi-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041753465</pqid></control><display><type>article</type><title>Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bai, Yang ; Tofel, Pavel ; Hadas, Zdenek ; Smilek, Jan ; Losak, Petr ; Skarvada, Pavel ; Macku, Robert</creator><creatorcontrib>Bai, Yang ; Tofel, Pavel ; Hadas, Zdenek ; Smilek, Jan ; Losak, Petr ; Skarvada, Pavel ; Macku, Robert</creatorcontrib><description>•A piezoelectric energy harvester used for human motion energy harvesting.•Energy harvesting capability of using a linear harvester in random vibration input.•Performance tested in real-life activities in hand-arm and head motions.•Output power enough to drive medical sensors in real applications.•Guidance to help designers to balance the choice of a linear and nonlinear systems in energy harvesters.
The capability of using a linear kinetic energy harvester – A cantilever structured piezoelectric energy harvester – to harvest human motions in the real-life activities is investigated. The whole loop of the design, simulation, fabrication and test of the energy harvester is presented. With the smart wristband/watch sized energy harvester, a root mean square of the output power of 50 μW is obtained from the real-life hand-arm motion in human’s daily life. Such a power is enough to make some low power consumption sensors to be self-powered. This paper provides a good and reliable comparison to those with nonlinear structures. It also helps the designers to consider whether to choose a nonlinear structure or not in a particular energy harvester based on different application scenarios.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2018.01.006</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Body motion ; Cantilever ; Electricity generation ; Energy consumption ; Energy harvesting ; Human motion ; Kinetic energy ; Piezoelectric ; Piezoelectricity ; Power consumption ; PZNN-PLZT ; Random vibration ; Sensors ; Simulation ; Studies ; Wearable</subject><ispartof>Mechanical systems and signal processing, 2018-06, Vol.106, p.303-318</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-f095b48a2aece8c61b5f4ecc1a82425de2a4e37067e9d1e54d2e0e598be87b1c3</citedby><cites>FETCH-LOGICAL-c376t-f095b48a2aece8c61b5f4ecc1a82425de2a4e37067e9d1e54d2e0e598be87b1c3</cites><orcidid>0000-0002-9097-1550 ; 0000-0002-0861-2410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymssp.2018.01.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Tofel, Pavel</creatorcontrib><creatorcontrib>Hadas, Zdenek</creatorcontrib><creatorcontrib>Smilek, Jan</creatorcontrib><creatorcontrib>Losak, Petr</creatorcontrib><creatorcontrib>Skarvada, Pavel</creatorcontrib><creatorcontrib>Macku, Robert</creatorcontrib><title>Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input</title><title>Mechanical systems and signal processing</title><description>•A piezoelectric energy harvester used for human motion energy harvesting.•Energy harvesting capability of using a linear harvester in random vibration input.•Performance tested in real-life activities in hand-arm and head motions.•Output power enough to drive medical sensors in real applications.•Guidance to help designers to balance the choice of a linear and nonlinear systems in energy harvesters.
The capability of using a linear kinetic energy harvester – A cantilever structured piezoelectric energy harvester – to harvest human motions in the real-life activities is investigated. The whole loop of the design, simulation, fabrication and test of the energy harvester is presented. With the smart wristband/watch sized energy harvester, a root mean square of the output power of 50 μW is obtained from the real-life hand-arm motion in human’s daily life. Such a power is enough to make some low power consumption sensors to be self-powered. This paper provides a good and reliable comparison to those with nonlinear structures. It also helps the designers to consider whether to choose a nonlinear structure or not in a particular energy harvester based on different application scenarios.</description><subject>Body motion</subject><subject>Cantilever</subject><subject>Electricity generation</subject><subject>Energy consumption</subject><subject>Energy harvesting</subject><subject>Human motion</subject><subject>Kinetic energy</subject><subject>Piezoelectric</subject><subject>Piezoelectricity</subject><subject>Power consumption</subject><subject>PZNN-PLZT</subject><subject>Random vibration</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Studies</subject><subject>Wearable</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P3DAQhq0KJBboL-BiqeekYydxnEMPFeoHEhIXOFuOMwGvduN07ARtJf57vV3OnObyvPPOPIzdCCgFCPV1Wx72Mc6lBKFLECWA-sQ2AjpVCCnUGduA1rqoZAsX7DLGLQB0NagNe7ubVozJP9vkw8TDyC13dkp-hysSj4kWlxbCgc8e_wbcoUvkHccJ6fnAXywd45lcYmbGQPwVLdl-h3zA1TuM_NWnF052GsKer76nU5Of5iVds_PR7iJ-fp9X7Onnj8fb38X9w6-72-_3hatalYoRuqavtZUWHWqnRN-MNTonrJa1bAaUtsaqBdViNwhs6kEiYNPpHnXbC1ddsS-nvTOFP0s-2GzDQlOuNBJq0TZVrZpMVSfKUYiRcDQz-b2lgxFgjp7N1vz3bI6eDQiTPefUt1MK8wOrRzLReZwcDp6yLDME_2H-H4aHi-o</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Bai, Yang</creator><creator>Tofel, Pavel</creator><creator>Hadas, Zdenek</creator><creator>Smilek, Jan</creator><creator>Losak, Petr</creator><creator>Skarvada, Pavel</creator><creator>Macku, Robert</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9097-1550</orcidid><orcidid>https://orcid.org/0000-0002-0861-2410</orcidid></search><sort><creationdate>201806</creationdate><title>Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input</title><author>Bai, Yang ; Tofel, Pavel ; Hadas, Zdenek ; Smilek, Jan ; Losak, Petr ; Skarvada, Pavel ; Macku, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-f095b48a2aece8c61b5f4ecc1a82425de2a4e37067e9d1e54d2e0e598be87b1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Body motion</topic><topic>Cantilever</topic><topic>Electricity generation</topic><topic>Energy consumption</topic><topic>Energy harvesting</topic><topic>Human motion</topic><topic>Kinetic energy</topic><topic>Piezoelectric</topic><topic>Piezoelectricity</topic><topic>Power consumption</topic><topic>PZNN-PLZT</topic><topic>Random vibration</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Studies</topic><topic>Wearable</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Tofel, Pavel</creatorcontrib><creatorcontrib>Hadas, Zdenek</creatorcontrib><creatorcontrib>Smilek, Jan</creatorcontrib><creatorcontrib>Losak, Petr</creatorcontrib><creatorcontrib>Skarvada, Pavel</creatorcontrib><creatorcontrib>Macku, Robert</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Yang</au><au>Tofel, Pavel</au><au>Hadas, Zdenek</au><au>Smilek, Jan</au><au>Losak, Petr</au><au>Skarvada, Pavel</au><au>Macku, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2018-06</date><risdate>2018</risdate><volume>106</volume><spage>303</spage><epage>318</epage><pages>303-318</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>•A piezoelectric energy harvester used for human motion energy harvesting.•Energy harvesting capability of using a linear harvester in random vibration input.•Performance tested in real-life activities in hand-arm and head motions.•Output power enough to drive medical sensors in real applications.•Guidance to help designers to balance the choice of a linear and nonlinear systems in energy harvesters.
The capability of using a linear kinetic energy harvester – A cantilever structured piezoelectric energy harvester – to harvest human motions in the real-life activities is investigated. The whole loop of the design, simulation, fabrication and test of the energy harvester is presented. With the smart wristband/watch sized energy harvester, a root mean square of the output power of 50 μW is obtained from the real-life hand-arm motion in human’s daily life. Such a power is enough to make some low power consumption sensors to be self-powered. This paper provides a good and reliable comparison to those with nonlinear structures. It also helps the designers to consider whether to choose a nonlinear structure or not in a particular energy harvester based on different application scenarios.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2018.01.006</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9097-1550</orcidid><orcidid>https://orcid.org/0000-0002-0861-2410</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-3270 |
ispartof | Mechanical systems and signal processing, 2018-06, Vol.106, p.303-318 |
issn | 0888-3270 1096-1216 |
language | eng |
recordid | cdi_proquest_journals_2041753465 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Body motion Cantilever Electricity generation Energy consumption Energy harvesting Human motion Kinetic energy Piezoelectric Piezoelectricity Power consumption PZNN-PLZT Random vibration Sensors Simulation Studies Wearable |
title | Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20a%20cantilever%20structured%20piezoelectric%20energy%20harvester%20used%20for%20wearable%20devices%20with%20random%20vibration%20input&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Bai,%20Yang&rft.date=2018-06&rft.volume=106&rft.spage=303&rft.epage=318&rft.pages=303-318&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2018.01.006&rft_dat=%3Cproquest_cross%3E2041753465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2041753465&rft_id=info:pmid/&rft_els_id=S0888327018300141&rfr_iscdi=true |