Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input

•A piezoelectric energy harvester used for human motion energy harvesting.•Energy harvesting capability of using a linear harvester in random vibration input.•Performance tested in real-life activities in hand-arm and head motions.•Output power enough to drive medical sensors in real applications.•G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing 2018-06, Vol.106, p.303-318
Hauptverfasser: Bai, Yang, Tofel, Pavel, Hadas, Zdenek, Smilek, Jan, Losak, Petr, Skarvada, Pavel, Macku, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue
container_start_page 303
container_title Mechanical systems and signal processing
container_volume 106
creator Bai, Yang
Tofel, Pavel
Hadas, Zdenek
Smilek, Jan
Losak, Petr
Skarvada, Pavel
Macku, Robert
description •A piezoelectric energy harvester used for human motion energy harvesting.•Energy harvesting capability of using a linear harvester in random vibration input.•Performance tested in real-life activities in hand-arm and head motions.•Output power enough to drive medical sensors in real applications.•Guidance to help designers to balance the choice of a linear and nonlinear systems in energy harvesters. The capability of using a linear kinetic energy harvester – A cantilever structured piezoelectric energy harvester – to harvest human motions in the real-life activities is investigated. The whole loop of the design, simulation, fabrication and test of the energy harvester is presented. With the smart wristband/watch sized energy harvester, a root mean square of the output power of 50 μW is obtained from the real-life hand-arm motion in human’s daily life. Such a power is enough to make some low power consumption sensors to be self-powered. This paper provides a good and reliable comparison to those with nonlinear structures. It also helps the designers to consider whether to choose a nonlinear structure or not in a particular energy harvester based on different application scenarios.
doi_str_mv 10.1016/j.ymssp.2018.01.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2041753465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327018300141</els_id><sourcerecordid>2041753465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-f095b48a2aece8c61b5f4ecc1a82425de2a4e37067e9d1e54d2e0e598be87b1c3</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq0KJBboL-BiqeekYydxnEMPFeoHEhIXOFuOMwGvduN07ARtJf57vV3OnObyvPPOPIzdCCgFCPV1Wx72Mc6lBKFLECWA-sQ2AjpVCCnUGduA1rqoZAsX7DLGLQB0NagNe7ubVozJP9vkw8TDyC13dkp-hysSj4kWlxbCgc8e_wbcoUvkHccJ6fnAXywd45lcYmbGQPwVLdl-h3zA1TuM_NWnF052GsKer76nU5Of5iVds_PR7iJ-fp9X7Onnj8fb38X9w6-72-_3hatalYoRuqavtZUWHWqnRN-MNTonrJa1bAaUtsaqBdViNwhs6kEiYNPpHnXbC1ddsS-nvTOFP0s-2GzDQlOuNBJq0TZVrZpMVSfKUYiRcDQz-b2lgxFgjp7N1vz3bI6eDQiTPefUt1MK8wOrRzLReZwcDp6yLDME_2H-H4aHi-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041753465</pqid></control><display><type>article</type><title>Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bai, Yang ; Tofel, Pavel ; Hadas, Zdenek ; Smilek, Jan ; Losak, Petr ; Skarvada, Pavel ; Macku, Robert</creator><creatorcontrib>Bai, Yang ; Tofel, Pavel ; Hadas, Zdenek ; Smilek, Jan ; Losak, Petr ; Skarvada, Pavel ; Macku, Robert</creatorcontrib><description>•A piezoelectric energy harvester used for human motion energy harvesting.•Energy harvesting capability of using a linear harvester in random vibration input.•Performance tested in real-life activities in hand-arm and head motions.•Output power enough to drive medical sensors in real applications.•Guidance to help designers to balance the choice of a linear and nonlinear systems in energy harvesters. The capability of using a linear kinetic energy harvester – A cantilever structured piezoelectric energy harvester – to harvest human motions in the real-life activities is investigated. The whole loop of the design, simulation, fabrication and test of the energy harvester is presented. With the smart wristband/watch sized energy harvester, a root mean square of the output power of 50 μW is obtained from the real-life hand-arm motion in human’s daily life. Such a power is enough to make some low power consumption sensors to be self-powered. This paper provides a good and reliable comparison to those with nonlinear structures. It also helps the designers to consider whether to choose a nonlinear structure or not in a particular energy harvester based on different application scenarios.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2018.01.006</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Body motion ; Cantilever ; Electricity generation ; Energy consumption ; Energy harvesting ; Human motion ; Kinetic energy ; Piezoelectric ; Piezoelectricity ; Power consumption ; PZNN-PLZT ; Random vibration ; Sensors ; Simulation ; Studies ; Wearable</subject><ispartof>Mechanical systems and signal processing, 2018-06, Vol.106, p.303-318</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-f095b48a2aece8c61b5f4ecc1a82425de2a4e37067e9d1e54d2e0e598be87b1c3</citedby><cites>FETCH-LOGICAL-c376t-f095b48a2aece8c61b5f4ecc1a82425de2a4e37067e9d1e54d2e0e598be87b1c3</cites><orcidid>0000-0002-9097-1550 ; 0000-0002-0861-2410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymssp.2018.01.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Tofel, Pavel</creatorcontrib><creatorcontrib>Hadas, Zdenek</creatorcontrib><creatorcontrib>Smilek, Jan</creatorcontrib><creatorcontrib>Losak, Petr</creatorcontrib><creatorcontrib>Skarvada, Pavel</creatorcontrib><creatorcontrib>Macku, Robert</creatorcontrib><title>Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input</title><title>Mechanical systems and signal processing</title><description>•A piezoelectric energy harvester used for human motion energy harvesting.•Energy harvesting capability of using a linear harvester in random vibration input.•Performance tested in real-life activities in hand-arm and head motions.•Output power enough to drive medical sensors in real applications.•Guidance to help designers to balance the choice of a linear and nonlinear systems in energy harvesters. The capability of using a linear kinetic energy harvester – A cantilever structured piezoelectric energy harvester – to harvest human motions in the real-life activities is investigated. The whole loop of the design, simulation, fabrication and test of the energy harvester is presented. With the smart wristband/watch sized energy harvester, a root mean square of the output power of 50 μW is obtained from the real-life hand-arm motion in human’s daily life. Such a power is enough to make some low power consumption sensors to be self-powered. This paper provides a good and reliable comparison to those with nonlinear structures. It also helps the designers to consider whether to choose a nonlinear structure or not in a particular energy harvester based on different application scenarios.</description><subject>Body motion</subject><subject>Cantilever</subject><subject>Electricity generation</subject><subject>Energy consumption</subject><subject>Energy harvesting</subject><subject>Human motion</subject><subject>Kinetic energy</subject><subject>Piezoelectric</subject><subject>Piezoelectricity</subject><subject>Power consumption</subject><subject>PZNN-PLZT</subject><subject>Random vibration</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Studies</subject><subject>Wearable</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P3DAQhq0KJBboL-BiqeekYydxnEMPFeoHEhIXOFuOMwGvduN07ARtJf57vV3OnObyvPPOPIzdCCgFCPV1Wx72Mc6lBKFLECWA-sQ2AjpVCCnUGduA1rqoZAsX7DLGLQB0NagNe7ubVozJP9vkw8TDyC13dkp-hysSj4kWlxbCgc8e_wbcoUvkHccJ6fnAXywd45lcYmbGQPwVLdl-h3zA1TuM_NWnF052GsKer76nU5Of5iVds_PR7iJ-fp9X7Onnj8fb38X9w6-72-_3hatalYoRuqavtZUWHWqnRN-MNTonrJa1bAaUtsaqBdViNwhs6kEiYNPpHnXbC1ddsS-nvTOFP0s-2GzDQlOuNBJq0TZVrZpMVSfKUYiRcDQz-b2lgxFgjp7N1vz3bI6eDQiTPefUt1MK8wOrRzLReZwcDp6yLDME_2H-H4aHi-o</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Bai, Yang</creator><creator>Tofel, Pavel</creator><creator>Hadas, Zdenek</creator><creator>Smilek, Jan</creator><creator>Losak, Petr</creator><creator>Skarvada, Pavel</creator><creator>Macku, Robert</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9097-1550</orcidid><orcidid>https://orcid.org/0000-0002-0861-2410</orcidid></search><sort><creationdate>201806</creationdate><title>Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input</title><author>Bai, Yang ; Tofel, Pavel ; Hadas, Zdenek ; Smilek, Jan ; Losak, Petr ; Skarvada, Pavel ; Macku, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-f095b48a2aece8c61b5f4ecc1a82425de2a4e37067e9d1e54d2e0e598be87b1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Body motion</topic><topic>Cantilever</topic><topic>Electricity generation</topic><topic>Energy consumption</topic><topic>Energy harvesting</topic><topic>Human motion</topic><topic>Kinetic energy</topic><topic>Piezoelectric</topic><topic>Piezoelectricity</topic><topic>Power consumption</topic><topic>PZNN-PLZT</topic><topic>Random vibration</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Studies</topic><topic>Wearable</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Tofel, Pavel</creatorcontrib><creatorcontrib>Hadas, Zdenek</creatorcontrib><creatorcontrib>Smilek, Jan</creatorcontrib><creatorcontrib>Losak, Petr</creatorcontrib><creatorcontrib>Skarvada, Pavel</creatorcontrib><creatorcontrib>Macku, Robert</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Yang</au><au>Tofel, Pavel</au><au>Hadas, Zdenek</au><au>Smilek, Jan</au><au>Losak, Petr</au><au>Skarvada, Pavel</au><au>Macku, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2018-06</date><risdate>2018</risdate><volume>106</volume><spage>303</spage><epage>318</epage><pages>303-318</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>•A piezoelectric energy harvester used for human motion energy harvesting.•Energy harvesting capability of using a linear harvester in random vibration input.•Performance tested in real-life activities in hand-arm and head motions.•Output power enough to drive medical sensors in real applications.•Guidance to help designers to balance the choice of a linear and nonlinear systems in energy harvesters. The capability of using a linear kinetic energy harvester – A cantilever structured piezoelectric energy harvester – to harvest human motions in the real-life activities is investigated. The whole loop of the design, simulation, fabrication and test of the energy harvester is presented. With the smart wristband/watch sized energy harvester, a root mean square of the output power of 50 μW is obtained from the real-life hand-arm motion in human’s daily life. Such a power is enough to make some low power consumption sensors to be self-powered. This paper provides a good and reliable comparison to those with nonlinear structures. It also helps the designers to consider whether to choose a nonlinear structure or not in a particular energy harvester based on different application scenarios.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2018.01.006</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9097-1550</orcidid><orcidid>https://orcid.org/0000-0002-0861-2410</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2018-06, Vol.106, p.303-318
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_journals_2041753465
source ScienceDirect Journals (5 years ago - present)
subjects Body motion
Cantilever
Electricity generation
Energy consumption
Energy harvesting
Human motion
Kinetic energy
Piezoelectric
Piezoelectricity
Power consumption
PZNN-PLZT
Random vibration
Sensors
Simulation
Studies
Wearable
title Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20a%20cantilever%20structured%20piezoelectric%20energy%20harvester%20used%20for%20wearable%20devices%20with%20random%20vibration%20input&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Bai,%20Yang&rft.date=2018-06&rft.volume=106&rft.spage=303&rft.epage=318&rft.pages=303-318&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2018.01.006&rft_dat=%3Cproquest_cross%3E2041753465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2041753465&rft_id=info:pmid/&rft_els_id=S0888327018300141&rfr_iscdi=true