A two-level variational multiscale meshless local Petrov–Galerkin (VMS-MLPG) method for convection-diffusion problems with large Peclet number

•VMS method is constructed in the MLPG method.•Utilize the high and low orders Gauss integration to instead the large scale and small scale.•The numerical solution is accuracy and stability. It is challengeable to obtain the stable and accurate solutions of convection-diffusion problems with large P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2018-03, Vol.164, p.73-82
Hauptverfasser: Chen, Zheng-Ji, Li, Zeng-Yao, Xie, Wen-Li, Wu, Xue-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue
container_start_page 73
container_title Computers & fluids
container_volume 164
creator Chen, Zheng-Ji
Li, Zeng-Yao
Xie, Wen-Li
Wu, Xue-Hong
description •VMS method is constructed in the MLPG method.•Utilize the high and low orders Gauss integration to instead the large scale and small scale.•The numerical solution is accuracy and stability. It is challengeable to obtain the stable and accurate solutions of convection-diffusion problems with large Peclet number (Pe) since the convection term may cause oscillation solutions at large Pe. In this paper, a unit operator (first level) and an orthogonal project operator (second level) are constructed to act as the stability terms for meshless local Petrov-Galerkin (MLPG) method, which is called a two-level variational multiscale MLPG (VMS-MLPG) method. The VMS-MLPG method is applied to eliminate oscillation, overshoots and undershoots of MLPG method at large Pe. The prediction accuracy and the numerical stability of the proposed method for the Smith-Hutton and the Brezzi problems are analyzed and validated by comparing with the MLPG method and the finite volume method (FVM) with various difference schemes. It is showed that the present VMS-MLPG method can guarantee the stable and reasonable solutions of convection-diffusion problems with large Peclet number.
doi_str_mv 10.1016/j.compfluid.2017.03.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2041724574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793017301044</els_id><sourcerecordid>2041724574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-adb929cb03cdbf1ca83980e93aa18e7b2392a150ab3f9f9742e7ff00b91534373</originalsourceid><addsrcrecordid>eNqFkM-KFDEQh4MoOK4-gwEveui2kvSYyXFYdBRmccE_15BOV5yM6c6YpHvx5iMIvqFPYoYRr56qivzqI_UR8pRBy4C9enlsbRxPLsx-aDkw2YJogYt7ZMU2UjUgO3mfrAC6dSOVgIfkUc5HqLPg3Yr83NJyF5uACwa6mORN8XEygY5zKD5bE5COmA8Bc6Yh1pneYklx-f3j164-pq9-os8_33xobva3uxc1Ww5xoC4mauO0oD3jmsE7N-fa0VOKfcAx0ztfDjSY9AUr0AYsdJrHHtNj8sCZkPHJ33pFPr15_fH6bbN_v3t3vd03VnSiNGboFVe2B2GH3jFrNkJtAJUwhm1Q9lwobtgaTC-cckp2HKVzAL1i6wqQ4oo8u3Drj77NmIs-xjnVy7Pm0DHJu7XsakpeUjbFnBM6fUp-NOm7ZqDP-vVR_9Ovz_o1CF31183tZRPrEYvHpLP1OFkcfKpW9BD9fxl_AK2EliQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041724574</pqid></control><display><type>article</type><title>A two-level variational multiscale meshless local Petrov–Galerkin (VMS-MLPG) method for convection-diffusion problems with large Peclet number</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chen, Zheng-Ji ; Li, Zeng-Yao ; Xie, Wen-Li ; Wu, Xue-Hong</creator><creatorcontrib>Chen, Zheng-Ji ; Li, Zeng-Yao ; Xie, Wen-Li ; Wu, Xue-Hong</creatorcontrib><description>•VMS method is constructed in the MLPG method.•Utilize the high and low orders Gauss integration to instead the large scale and small scale.•The numerical solution is accuracy and stability. It is challengeable to obtain the stable and accurate solutions of convection-diffusion problems with large Peclet number (Pe) since the convection term may cause oscillation solutions at large Pe. In this paper, a unit operator (first level) and an orthogonal project operator (second level) are constructed to act as the stability terms for meshless local Petrov-Galerkin (MLPG) method, which is called a two-level variational multiscale MLPG (VMS-MLPG) method. The VMS-MLPG method is applied to eliminate oscillation, overshoots and undershoots of MLPG method at large Pe. The prediction accuracy and the numerical stability of the proposed method for the Smith-Hutton and the Brezzi problems are analyzed and validated by comparing with the MLPG method and the finite volume method (FVM) with various difference schemes. It is showed that the present VMS-MLPG method can guarantee the stable and reasonable solutions of convection-diffusion problems with large Peclet number.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2017.03.023</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Comparative analysis ; Convection-diffusion equation ; Convection-diffusion problems ; Diffusion ; Dimensional analysis ; Finite element method ; Finite volume method ; Galerkin method ; Large Peclet number ; Meshless methods ; Multiscale analysis ; Numbers ; Numerical stability ; Peclet number ; VMS-MLPG method</subject><ispartof>Computers &amp; fluids, 2018-03, Vol.164, p.73-82</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-adb929cb03cdbf1ca83980e93aa18e7b2392a150ab3f9f9742e7ff00b91534373</citedby><cites>FETCH-LOGICAL-c343t-adb929cb03cdbf1ca83980e93aa18e7b2392a150ab3f9f9742e7ff00b91534373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2017.03.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Chen, Zheng-Ji</creatorcontrib><creatorcontrib>Li, Zeng-Yao</creatorcontrib><creatorcontrib>Xie, Wen-Li</creatorcontrib><creatorcontrib>Wu, Xue-Hong</creatorcontrib><title>A two-level variational multiscale meshless local Petrov–Galerkin (VMS-MLPG) method for convection-diffusion problems with large Peclet number</title><title>Computers &amp; fluids</title><description>•VMS method is constructed in the MLPG method.•Utilize the high and low orders Gauss integration to instead the large scale and small scale.•The numerical solution is accuracy and stability. It is challengeable to obtain the stable and accurate solutions of convection-diffusion problems with large Peclet number (Pe) since the convection term may cause oscillation solutions at large Pe. In this paper, a unit operator (first level) and an orthogonal project operator (second level) are constructed to act as the stability terms for meshless local Petrov-Galerkin (MLPG) method, which is called a two-level variational multiscale MLPG (VMS-MLPG) method. The VMS-MLPG method is applied to eliminate oscillation, overshoots and undershoots of MLPG method at large Pe. The prediction accuracy and the numerical stability of the proposed method for the Smith-Hutton and the Brezzi problems are analyzed and validated by comparing with the MLPG method and the finite volume method (FVM) with various difference schemes. It is showed that the present VMS-MLPG method can guarantee the stable and reasonable solutions of convection-diffusion problems with large Peclet number.</description><subject>Comparative analysis</subject><subject>Convection-diffusion equation</subject><subject>Convection-diffusion problems</subject><subject>Diffusion</subject><subject>Dimensional analysis</subject><subject>Finite element method</subject><subject>Finite volume method</subject><subject>Galerkin method</subject><subject>Large Peclet number</subject><subject>Meshless methods</subject><subject>Multiscale analysis</subject><subject>Numbers</subject><subject>Numerical stability</subject><subject>Peclet number</subject><subject>VMS-MLPG method</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM-KFDEQh4MoOK4-gwEveui2kvSYyXFYdBRmccE_15BOV5yM6c6YpHvx5iMIvqFPYoYRr56qivzqI_UR8pRBy4C9enlsbRxPLsx-aDkw2YJogYt7ZMU2UjUgO3mfrAC6dSOVgIfkUc5HqLPg3Yr83NJyF5uACwa6mORN8XEygY5zKD5bE5COmA8Bc6Yh1pneYklx-f3j164-pq9-os8_33xobva3uxc1Ww5xoC4mauO0oD3jmsE7N-fa0VOKfcAx0ztfDjSY9AUr0AYsdJrHHtNj8sCZkPHJ33pFPr15_fH6bbN_v3t3vd03VnSiNGboFVe2B2GH3jFrNkJtAJUwhm1Q9lwobtgaTC-cckp2HKVzAL1i6wqQ4oo8u3Drj77NmIs-xjnVy7Pm0DHJu7XsakpeUjbFnBM6fUp-NOm7ZqDP-vVR_9Ovz_o1CF31183tZRPrEYvHpLP1OFkcfKpW9BD9fxl_AK2EliQ</recordid><startdate>20180315</startdate><enddate>20180315</enddate><creator>Chen, Zheng-Ji</creator><creator>Li, Zeng-Yao</creator><creator>Xie, Wen-Li</creator><creator>Wu, Xue-Hong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180315</creationdate><title>A two-level variational multiscale meshless local Petrov–Galerkin (VMS-MLPG) method for convection-diffusion problems with large Peclet number</title><author>Chen, Zheng-Ji ; Li, Zeng-Yao ; Xie, Wen-Li ; Wu, Xue-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-adb929cb03cdbf1ca83980e93aa18e7b2392a150ab3f9f9742e7ff00b91534373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Comparative analysis</topic><topic>Convection-diffusion equation</topic><topic>Convection-diffusion problems</topic><topic>Diffusion</topic><topic>Dimensional analysis</topic><topic>Finite element method</topic><topic>Finite volume method</topic><topic>Galerkin method</topic><topic>Large Peclet number</topic><topic>Meshless methods</topic><topic>Multiscale analysis</topic><topic>Numbers</topic><topic>Numerical stability</topic><topic>Peclet number</topic><topic>VMS-MLPG method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zheng-Ji</creatorcontrib><creatorcontrib>Li, Zeng-Yao</creatorcontrib><creatorcontrib>Xie, Wen-Li</creatorcontrib><creatorcontrib>Wu, Xue-Hong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zheng-Ji</au><au>Li, Zeng-Yao</au><au>Xie, Wen-Li</au><au>Wu, Xue-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-level variational multiscale meshless local Petrov–Galerkin (VMS-MLPG) method for convection-diffusion problems with large Peclet number</atitle><jtitle>Computers &amp; fluids</jtitle><date>2018-03-15</date><risdate>2018</risdate><volume>164</volume><spage>73</spage><epage>82</epage><pages>73-82</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•VMS method is constructed in the MLPG method.•Utilize the high and low orders Gauss integration to instead the large scale and small scale.•The numerical solution is accuracy and stability. It is challengeable to obtain the stable and accurate solutions of convection-diffusion problems with large Peclet number (Pe) since the convection term may cause oscillation solutions at large Pe. In this paper, a unit operator (first level) and an orthogonal project operator (second level) are constructed to act as the stability terms for meshless local Petrov-Galerkin (MLPG) method, which is called a two-level variational multiscale MLPG (VMS-MLPG) method. The VMS-MLPG method is applied to eliminate oscillation, overshoots and undershoots of MLPG method at large Pe. The prediction accuracy and the numerical stability of the proposed method for the Smith-Hutton and the Brezzi problems are analyzed and validated by comparing with the MLPG method and the finite volume method (FVM) with various difference schemes. It is showed that the present VMS-MLPG method can guarantee the stable and reasonable solutions of convection-diffusion problems with large Peclet number.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2017.03.023</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2018-03, Vol.164, p.73-82
issn 0045-7930
1879-0747
language eng
recordid cdi_proquest_journals_2041724574
source ScienceDirect Journals (5 years ago - present)
subjects Comparative analysis
Convection-diffusion equation
Convection-diffusion problems
Diffusion
Dimensional analysis
Finite element method
Finite volume method
Galerkin method
Large Peclet number
Meshless methods
Multiscale analysis
Numbers
Numerical stability
Peclet number
VMS-MLPG method
title A two-level variational multiscale meshless local Petrov–Galerkin (VMS-MLPG) method for convection-diffusion problems with large Peclet number
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-level%20variational%20multiscale%20meshless%20local%20Petrov%E2%80%93Galerkin%20(VMS-MLPG)%20method%20for%20convection-diffusion%20problems%20with%20large%20Peclet%20number&rft.jtitle=Computers%20&%20fluids&rft.au=Chen,%20Zheng-Ji&rft.date=2018-03-15&rft.volume=164&rft.spage=73&rft.epage=82&rft.pages=73-82&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2017.03.023&rft_dat=%3Cproquest_cross%3E2041724574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2041724574&rft_id=info:pmid/&rft_els_id=S0045793017301044&rfr_iscdi=true