A two-level variational multiscale meshless local Petrov–Galerkin (VMS-MLPG) method for convection-diffusion problems with large Peclet number
•VMS method is constructed in the MLPG method.•Utilize the high and low orders Gauss integration to instead the large scale and small scale.•The numerical solution is accuracy and stability. It is challengeable to obtain the stable and accurate solutions of convection-diffusion problems with large P...
Gespeichert in:
Veröffentlicht in: | Computers & fluids 2018-03, Vol.164, p.73-82 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 82 |
---|---|
container_issue | |
container_start_page | 73 |
container_title | Computers & fluids |
container_volume | 164 |
creator | Chen, Zheng-Ji Li, Zeng-Yao Xie, Wen-Li Wu, Xue-Hong |
description | •VMS method is constructed in the MLPG method.•Utilize the high and low orders Gauss integration to instead the large scale and small scale.•The numerical solution is accuracy and stability.
It is challengeable to obtain the stable and accurate solutions of convection-diffusion problems with large Peclet number (Pe) since the convection term may cause oscillation solutions at large Pe. In this paper, a unit operator (first level) and an orthogonal project operator (second level) are constructed to act as the stability terms for meshless local Petrov-Galerkin (MLPG) method, which is called a two-level variational multiscale MLPG (VMS-MLPG) method. The VMS-MLPG method is applied to eliminate oscillation, overshoots and undershoots of MLPG method at large Pe. The prediction accuracy and the numerical stability of the proposed method for the Smith-Hutton and the Brezzi problems are analyzed and validated by comparing with the MLPG method and the finite volume method (FVM) with various difference schemes. It is showed that the present VMS-MLPG method can guarantee the stable and reasonable solutions of convection-diffusion problems with large Peclet number. |
doi_str_mv | 10.1016/j.compfluid.2017.03.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2041724574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793017301044</els_id><sourcerecordid>2041724574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-adb929cb03cdbf1ca83980e93aa18e7b2392a150ab3f9f9742e7ff00b91534373</originalsourceid><addsrcrecordid>eNqFkM-KFDEQh4MoOK4-gwEveui2kvSYyXFYdBRmccE_15BOV5yM6c6YpHvx5iMIvqFPYoYRr56qivzqI_UR8pRBy4C9enlsbRxPLsx-aDkw2YJogYt7ZMU2UjUgO3mfrAC6dSOVgIfkUc5HqLPg3Yr83NJyF5uACwa6mORN8XEygY5zKD5bE5COmA8Bc6Yh1pneYklx-f3j164-pq9-os8_33xobva3uxc1Ww5xoC4mauO0oD3jmsE7N-fa0VOKfcAx0ztfDjSY9AUr0AYsdJrHHtNj8sCZkPHJ33pFPr15_fH6bbN_v3t3vd03VnSiNGboFVe2B2GH3jFrNkJtAJUwhm1Q9lwobtgaTC-cckp2HKVzAL1i6wqQ4oo8u3Drj77NmIs-xjnVy7Pm0DHJu7XsakpeUjbFnBM6fUp-NOm7ZqDP-vVR_9Ovz_o1CF31183tZRPrEYvHpLP1OFkcfKpW9BD9fxl_AK2EliQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041724574</pqid></control><display><type>article</type><title>A two-level variational multiscale meshless local Petrov–Galerkin (VMS-MLPG) method for convection-diffusion problems with large Peclet number</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chen, Zheng-Ji ; Li, Zeng-Yao ; Xie, Wen-Li ; Wu, Xue-Hong</creator><creatorcontrib>Chen, Zheng-Ji ; Li, Zeng-Yao ; Xie, Wen-Li ; Wu, Xue-Hong</creatorcontrib><description>•VMS method is constructed in the MLPG method.•Utilize the high and low orders Gauss integration to instead the large scale and small scale.•The numerical solution is accuracy and stability.
It is challengeable to obtain the stable and accurate solutions of convection-diffusion problems with large Peclet number (Pe) since the convection term may cause oscillation solutions at large Pe. In this paper, a unit operator (first level) and an orthogonal project operator (second level) are constructed to act as the stability terms for meshless local Petrov-Galerkin (MLPG) method, which is called a two-level variational multiscale MLPG (VMS-MLPG) method. The VMS-MLPG method is applied to eliminate oscillation, overshoots and undershoots of MLPG method at large Pe. The prediction accuracy and the numerical stability of the proposed method for the Smith-Hutton and the Brezzi problems are analyzed and validated by comparing with the MLPG method and the finite volume method (FVM) with various difference schemes. It is showed that the present VMS-MLPG method can guarantee the stable and reasonable solutions of convection-diffusion problems with large Peclet number.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2017.03.023</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Comparative analysis ; Convection-diffusion equation ; Convection-diffusion problems ; Diffusion ; Dimensional analysis ; Finite element method ; Finite volume method ; Galerkin method ; Large Peclet number ; Meshless methods ; Multiscale analysis ; Numbers ; Numerical stability ; Peclet number ; VMS-MLPG method</subject><ispartof>Computers & fluids, 2018-03, Vol.164, p.73-82</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-adb929cb03cdbf1ca83980e93aa18e7b2392a150ab3f9f9742e7ff00b91534373</citedby><cites>FETCH-LOGICAL-c343t-adb929cb03cdbf1ca83980e93aa18e7b2392a150ab3f9f9742e7ff00b91534373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2017.03.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Chen, Zheng-Ji</creatorcontrib><creatorcontrib>Li, Zeng-Yao</creatorcontrib><creatorcontrib>Xie, Wen-Li</creatorcontrib><creatorcontrib>Wu, Xue-Hong</creatorcontrib><title>A two-level variational multiscale meshless local Petrov–Galerkin (VMS-MLPG) method for convection-diffusion problems with large Peclet number</title><title>Computers & fluids</title><description>•VMS method is constructed in the MLPG method.•Utilize the high and low orders Gauss integration to instead the large scale and small scale.•The numerical solution is accuracy and stability.
It is challengeable to obtain the stable and accurate solutions of convection-diffusion problems with large Peclet number (Pe) since the convection term may cause oscillation solutions at large Pe. In this paper, a unit operator (first level) and an orthogonal project operator (second level) are constructed to act as the stability terms for meshless local Petrov-Galerkin (MLPG) method, which is called a two-level variational multiscale MLPG (VMS-MLPG) method. The VMS-MLPG method is applied to eliminate oscillation, overshoots and undershoots of MLPG method at large Pe. The prediction accuracy and the numerical stability of the proposed method for the Smith-Hutton and the Brezzi problems are analyzed and validated by comparing with the MLPG method and the finite volume method (FVM) with various difference schemes. It is showed that the present VMS-MLPG method can guarantee the stable and reasonable solutions of convection-diffusion problems with large Peclet number.</description><subject>Comparative analysis</subject><subject>Convection-diffusion equation</subject><subject>Convection-diffusion problems</subject><subject>Diffusion</subject><subject>Dimensional analysis</subject><subject>Finite element method</subject><subject>Finite volume method</subject><subject>Galerkin method</subject><subject>Large Peclet number</subject><subject>Meshless methods</subject><subject>Multiscale analysis</subject><subject>Numbers</subject><subject>Numerical stability</subject><subject>Peclet number</subject><subject>VMS-MLPG method</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM-KFDEQh4MoOK4-gwEveui2kvSYyXFYdBRmccE_15BOV5yM6c6YpHvx5iMIvqFPYoYRr56qivzqI_UR8pRBy4C9enlsbRxPLsx-aDkw2YJogYt7ZMU2UjUgO3mfrAC6dSOVgIfkUc5HqLPg3Yr83NJyF5uACwa6mORN8XEygY5zKD5bE5COmA8Bc6Yh1pneYklx-f3j164-pq9-os8_33xobva3uxc1Ww5xoC4mauO0oD3jmsE7N-fa0VOKfcAx0ztfDjSY9AUr0AYsdJrHHtNj8sCZkPHJ33pFPr15_fH6bbN_v3t3vd03VnSiNGboFVe2B2GH3jFrNkJtAJUwhm1Q9lwobtgaTC-cckp2HKVzAL1i6wqQ4oo8u3Drj77NmIs-xjnVy7Pm0DHJu7XsakpeUjbFnBM6fUp-NOm7ZqDP-vVR_9Ovz_o1CF31183tZRPrEYvHpLP1OFkcfKpW9BD9fxl_AK2EliQ</recordid><startdate>20180315</startdate><enddate>20180315</enddate><creator>Chen, Zheng-Ji</creator><creator>Li, Zeng-Yao</creator><creator>Xie, Wen-Li</creator><creator>Wu, Xue-Hong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180315</creationdate><title>A two-level variational multiscale meshless local Petrov–Galerkin (VMS-MLPG) method for convection-diffusion problems with large Peclet number</title><author>Chen, Zheng-Ji ; Li, Zeng-Yao ; Xie, Wen-Li ; Wu, Xue-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-adb929cb03cdbf1ca83980e93aa18e7b2392a150ab3f9f9742e7ff00b91534373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Comparative analysis</topic><topic>Convection-diffusion equation</topic><topic>Convection-diffusion problems</topic><topic>Diffusion</topic><topic>Dimensional analysis</topic><topic>Finite element method</topic><topic>Finite volume method</topic><topic>Galerkin method</topic><topic>Large Peclet number</topic><topic>Meshless methods</topic><topic>Multiscale analysis</topic><topic>Numbers</topic><topic>Numerical stability</topic><topic>Peclet number</topic><topic>VMS-MLPG method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zheng-Ji</creatorcontrib><creatorcontrib>Li, Zeng-Yao</creatorcontrib><creatorcontrib>Xie, Wen-Li</creatorcontrib><creatorcontrib>Wu, Xue-Hong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zheng-Ji</au><au>Li, Zeng-Yao</au><au>Xie, Wen-Li</au><au>Wu, Xue-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-level variational multiscale meshless local Petrov–Galerkin (VMS-MLPG) method for convection-diffusion problems with large Peclet number</atitle><jtitle>Computers & fluids</jtitle><date>2018-03-15</date><risdate>2018</risdate><volume>164</volume><spage>73</spage><epage>82</epage><pages>73-82</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•VMS method is constructed in the MLPG method.•Utilize the high and low orders Gauss integration to instead the large scale and small scale.•The numerical solution is accuracy and stability.
It is challengeable to obtain the stable and accurate solutions of convection-diffusion problems with large Peclet number (Pe) since the convection term may cause oscillation solutions at large Pe. In this paper, a unit operator (first level) and an orthogonal project operator (second level) are constructed to act as the stability terms for meshless local Petrov-Galerkin (MLPG) method, which is called a two-level variational multiscale MLPG (VMS-MLPG) method. The VMS-MLPG method is applied to eliminate oscillation, overshoots and undershoots of MLPG method at large Pe. The prediction accuracy and the numerical stability of the proposed method for the Smith-Hutton and the Brezzi problems are analyzed and validated by comparing with the MLPG method and the finite volume method (FVM) with various difference schemes. It is showed that the present VMS-MLPG method can guarantee the stable and reasonable solutions of convection-diffusion problems with large Peclet number.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2017.03.023</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2018-03, Vol.164, p.73-82 |
issn | 0045-7930 1879-0747 |
language | eng |
recordid | cdi_proquest_journals_2041724574 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Comparative analysis Convection-diffusion equation Convection-diffusion problems Diffusion Dimensional analysis Finite element method Finite volume method Galerkin method Large Peclet number Meshless methods Multiscale analysis Numbers Numerical stability Peclet number VMS-MLPG method |
title | A two-level variational multiscale meshless local Petrov–Galerkin (VMS-MLPG) method for convection-diffusion problems with large Peclet number |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-level%20variational%20multiscale%20meshless%20local%20Petrov%E2%80%93Galerkin%20(VMS-MLPG)%20method%20for%20convection-diffusion%20problems%20with%20large%20Peclet%20number&rft.jtitle=Computers%20&%20fluids&rft.au=Chen,%20Zheng-Ji&rft.date=2018-03-15&rft.volume=164&rft.spage=73&rft.epage=82&rft.pages=73-82&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2017.03.023&rft_dat=%3Cproquest_cross%3E2041724574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2041724574&rft_id=info:pmid/&rft_els_id=S0045793017301044&rfr_iscdi=true |