Interactive evolutionary multi-objective optimization for quasi-concave preference functions

We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preferen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2010-10, Vol.206 (2), p.417-425
Hauptverfasser: Fowler, John W., Gel, Esma S., Köksalan, Murat M., Korhonen, Pekka, Marquis, Jon L., Wallenius, Jyrki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 425
container_issue 2
container_start_page 417
container_title European journal of operational research
container_volume 206
creator Fowler, John W.
Gel, Esma S.
Köksalan, Murat M.
Korhonen, Pekka
Marquis, Jon L.
Wallenius, Jyrki
description We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preference information to form preference cones consisting of inferior solutions. The cones allow us to implicitly rank solutions that the DM has not considered. This technique avoids assuming an exact form for the preference function, but does assume that the preference function is quasi-concave. This paper describes the genetic algorithm and demonstrates its performance on the multi-objective knapsack problem.
doi_str_mv 10.1016/j.ejor.2010.02.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204161497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037722171000158X</els_id><sourcerecordid>2013818551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-1d9c74fd68898c12f5893d2fb89ff125418c664ef2944552664cd2637c35c8e63</originalsourceid><addsrcrecordid>eNp9UV1LHTEQDaVCb9U_4NNS6ONek2y-FnwRqVUUfLFvhRCzE5rl3s2a7F7QX-9sV3w0zCRD5pzJzAkhZ4xuGWXqvN9Cn_KWU7ygHE1_IRtmNK-VUfQr2dBG65pzpr-R76X0lFImmdyQv7fDBNn5KR6ggkPazVNMg8sv1X7eTbFOTz2syTROcR9f3ZKvQsrV8-xKrH0avMP0mCFAhsFDFebBL6hyQo6C2xU4fT-PyZ_rX49XN_X9w-_bq8v72gupppp1rdcidMqY1njGgzRt0_HwZNoQGJeCGa-UgMBbIaTkGPuOq0b7RnoDqjkmP9a6Y07PM5TJ9mnOAz5pORVMMdFqBPEV5HMqBbu1Y457nNQyahcRbW8XEe0ioqUcbSHdraQMI_gPBuBCKBR7sI3jVOH-8j9CauPiEqKP6IJpK7i0_6Y9Vvv53qcr3u1CdoOP5aMqx5mEalvEXaw4QNEOEbItPi7SdjHjb9guxc-afgPvlqJx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204161497</pqid></control><display><type>article</type><title>Interactive evolutionary multi-objective optimization for quasi-concave preference functions</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Fowler, John W. ; Gel, Esma S. ; Köksalan, Murat M. ; Korhonen, Pekka ; Marquis, Jon L. ; Wallenius, Jyrki</creator><creatorcontrib>Fowler, John W. ; Gel, Esma S. ; Köksalan, Murat M. ; Korhonen, Pekka ; Marquis, Jon L. ; Wallenius, Jyrki</creatorcontrib><description>We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preference information to form preference cones consisting of inferior solutions. The cones allow us to implicitly rank solutions that the DM has not considered. This technique avoids assuming an exact form for the preference function, but does assume that the preference function is quasi-concave. This paper describes the genetic algorithm and demonstrates its performance on the multi-objective knapsack problem.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2010.02.027</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Decision making models ; Decision theory. Utility theory ; Evolutionary optimization ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Genetic algorithms ; Interactive optimization ; Interactive optimization Multi-objective optimization Evolutionary optimization Knapsack problem ; Knapsack problem ; Multi-objective optimization ; Operational research and scientific management ; Operational research. Management science ; Optimization algorithms ; Preferences ; Studies</subject><ispartof>European journal of operational research, 2010-10, Vol.206 (2), p.417-425</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Oct 16, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-1d9c74fd68898c12f5893d2fb89ff125418c664ef2944552664cd2637c35c8e63</citedby><cites>FETCH-LOGICAL-c456t-1d9c74fd68898c12f5893d2fb89ff125418c664ef2944552664cd2637c35c8e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2010.02.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,3994,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22634699$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a206_3ay_3a2010_3ai_3a2_3ap_3a417-425.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Fowler, John W.</creatorcontrib><creatorcontrib>Gel, Esma S.</creatorcontrib><creatorcontrib>Köksalan, Murat M.</creatorcontrib><creatorcontrib>Korhonen, Pekka</creatorcontrib><creatorcontrib>Marquis, Jon L.</creatorcontrib><creatorcontrib>Wallenius, Jyrki</creatorcontrib><title>Interactive evolutionary multi-objective optimization for quasi-concave preference functions</title><title>European journal of operational research</title><description>We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preference information to form preference cones consisting of inferior solutions. The cones allow us to implicitly rank solutions that the DM has not considered. This technique avoids assuming an exact form for the preference function, but does assume that the preference function is quasi-concave. This paper describes the genetic algorithm and demonstrates its performance on the multi-objective knapsack problem.</description><subject>Applied sciences</subject><subject>Decision making models</subject><subject>Decision theory. Utility theory</subject><subject>Evolutionary optimization</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Genetic algorithms</subject><subject>Interactive optimization</subject><subject>Interactive optimization Multi-objective optimization Evolutionary optimization Knapsack problem</subject><subject>Knapsack problem</subject><subject>Multi-objective optimization</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization algorithms</subject><subject>Preferences</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UV1LHTEQDaVCb9U_4NNS6ONek2y-FnwRqVUUfLFvhRCzE5rl3s2a7F7QX-9sV3w0zCRD5pzJzAkhZ4xuGWXqvN9Cn_KWU7ygHE1_IRtmNK-VUfQr2dBG65pzpr-R76X0lFImmdyQv7fDBNn5KR6ggkPazVNMg8sv1X7eTbFOTz2syTROcR9f3ZKvQsrV8-xKrH0avMP0mCFAhsFDFebBL6hyQo6C2xU4fT-PyZ_rX49XN_X9w-_bq8v72gupppp1rdcidMqY1njGgzRt0_HwZNoQGJeCGa-UgMBbIaTkGPuOq0b7RnoDqjkmP9a6Y07PM5TJ9mnOAz5pORVMMdFqBPEV5HMqBbu1Y457nNQyahcRbW8XEe0ioqUcbSHdraQMI_gPBuBCKBR7sI3jVOH-8j9CauPiEqKP6IJpK7i0_6Y9Vvv53qcr3u1CdoOP5aMqx5mEalvEXaw4QNEOEbItPi7SdjHjb9guxc-afgPvlqJx</recordid><startdate>20101016</startdate><enddate>20101016</enddate><creator>Fowler, John W.</creator><creator>Gel, Esma S.</creator><creator>Köksalan, Murat M.</creator><creator>Korhonen, Pekka</creator><creator>Marquis, Jon L.</creator><creator>Wallenius, Jyrki</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101016</creationdate><title>Interactive evolutionary multi-objective optimization for quasi-concave preference functions</title><author>Fowler, John W. ; Gel, Esma S. ; Köksalan, Murat M. ; Korhonen, Pekka ; Marquis, Jon L. ; Wallenius, Jyrki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-1d9c74fd68898c12f5893d2fb89ff125418c664ef2944552664cd2637c35c8e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Decision making models</topic><topic>Decision theory. Utility theory</topic><topic>Evolutionary optimization</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Genetic algorithms</topic><topic>Interactive optimization</topic><topic>Interactive optimization Multi-objective optimization Evolutionary optimization Knapsack problem</topic><topic>Knapsack problem</topic><topic>Multi-objective optimization</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization algorithms</topic><topic>Preferences</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fowler, John W.</creatorcontrib><creatorcontrib>Gel, Esma S.</creatorcontrib><creatorcontrib>Köksalan, Murat M.</creatorcontrib><creatorcontrib>Korhonen, Pekka</creatorcontrib><creatorcontrib>Marquis, Jon L.</creatorcontrib><creatorcontrib>Wallenius, Jyrki</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fowler, John W.</au><au>Gel, Esma S.</au><au>Köksalan, Murat M.</au><au>Korhonen, Pekka</au><au>Marquis, Jon L.</au><au>Wallenius, Jyrki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactive evolutionary multi-objective optimization for quasi-concave preference functions</atitle><jtitle>European journal of operational research</jtitle><date>2010-10-16</date><risdate>2010</risdate><volume>206</volume><issue>2</issue><spage>417</spage><epage>425</epage><pages>417-425</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preference information to form preference cones consisting of inferior solutions. The cones allow us to implicitly rank solutions that the DM has not considered. This technique avoids assuming an exact form for the preference function, but does assume that the preference function is quasi-concave. This paper describes the genetic algorithm and demonstrates its performance on the multi-objective knapsack problem.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2010.02.027</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2010-10, Vol.206 (2), p.417-425
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204161497
source RePEc; Elsevier ScienceDirect Journals
subjects Applied sciences
Decision making models
Decision theory. Utility theory
Evolutionary optimization
Exact sciences and technology
Flows in networks. Combinatorial problems
Genetic algorithms
Interactive optimization
Interactive optimization Multi-objective optimization Evolutionary optimization Knapsack problem
Knapsack problem
Multi-objective optimization
Operational research and scientific management
Operational research. Management science
Optimization algorithms
Preferences
Studies
title Interactive evolutionary multi-objective optimization for quasi-concave preference functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20evolutionary%20multi-objective%20optimization%20for%20quasi-concave%20preference%20functions&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Fowler,%20John%20W.&rft.date=2010-10-16&rft.volume=206&rft.issue=2&rft.spage=417&rft.epage=425&rft.pages=417-425&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2010.02.027&rft_dat=%3Cproquest_cross%3E2013818551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204161497&rft_id=info:pmid/&rft_els_id=S037722171000158X&rfr_iscdi=true