Approximate solutions to the turbine balancing problem
The turbine balancing problem (TBP) is an NP-Hard combinatorial optimization problem arising in the manufacturing and maintenance of turbine engines. Exact solution methods for solving the TBP are not appropriate since the problem has to be solved in real time and the input data is itself inaccurate...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 2001-04, Vol.130 (1), p.147-155 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | 1 |
container_start_page | 147 |
container_title | European journal of operational research |
container_volume | 130 |
creator | Pitsoulis, Leonidas S. Pardalos, Panos M. Hearn, Donald W. |
description | The turbine balancing problem (TBP) is an NP-Hard combinatorial optimization problem arising in the manufacturing and maintenance of turbine engines. Exact solution methods for solving the TBP are not appropriate since the problem has to be solved in real time and the input data is itself inaccurate. In this paper the TBP is formulated as a quadratic assignment problem (QAP) and we propose a heuristic algorithm for solving the resulting problem. Computational results on a set of instances provided by Pratt & Whitney (P&W) and from the literature, indicate that the proposed algorithm outperforms the current methods used for solving the TBP, and has the best overall performance with respect to other heuristic algorithms in the literature. |
doi_str_mv | 10.1016/S0377-2217(00)00029-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204150295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221700000291</els_id><sourcerecordid>69807362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-69a1ecfc159347c47902c57b015900d78bb0a1cf70128fe053fb696d9d41213e3</originalsourceid><addsrcrecordid>eNqFUF1LwzAUDaLgnP4EofikD9V706ZZn2QMv1DwQX0ObXqrGVtbk0z033u3yV4N3BwI55ybc4Q4RbhEwOLqBTKtUylRnwNcAIAsU9wTI5xomRaTAvbFaEc5FEchzJmECtVIFNNh8P23W1aRktAvVtH1XUhin8QPSuLK166jpK4WVWdd954wuV7Q8lgctNUi0MkfjsXb7c3r7D59er57mE2fUpurIqZFWSHZ1qIqs1zbXJcgrdI1Ly8BGj2pa6jQthpQTloClbV1URZN2eQoMaNsLM62vrz3c0Uhmnm_8h2vNBJyVBxVMUltSdb3IXhqzeA5kP8xCGbdkNk0ZNbxDYDZNGSQdY9bnaeB7E5EfOa9p2C-TFZhBnz_8EjujMGtH3mGNebaoFLmIy7Z7XrrRtzHlyNvgnXUWWqcJxtN07t__vMLvHSFPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204150295</pqid></control><display><type>article</type><title>Approximate solutions to the turbine balancing problem</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Pitsoulis, Leonidas S. ; Pardalos, Panos M. ; Hearn, Donald W.</creator><creatorcontrib>Pitsoulis, Leonidas S. ; Pardalos, Panos M. ; Hearn, Donald W.</creatorcontrib><description>The turbine balancing problem (TBP) is an NP-Hard combinatorial optimization problem arising in the manufacturing and maintenance of turbine engines. Exact solution methods for solving the TBP are not appropriate since the problem has to be solved in real time and the input data is itself inaccurate. In this paper the TBP is formulated as a quadratic assignment problem (QAP) and we propose a heuristic algorithm for solving the resulting problem. Computational results on a set of instances provided by Pratt & Whitney (P&W) and from the literature, indicate that the proposed algorithm outperforms the current methods used for solving the TBP, and has the best overall performance with respect to other heuristic algorithms in the literature.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/S0377-2217(00)00029-1</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Combinatorial optimization ; Engines ; Heuristic ; Heuristics ; Optimization ; Software ; Studies ; Theory ; Turbine balancing ; Turbines</subject><ispartof>European journal of operational research, 2001-04, Vol.130 (1), p.147-155</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Apr 1, 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-69a1ecfc159347c47902c57b015900d78bb0a1cf70128fe053fb696d9d41213e3</citedby><cites>FETCH-LOGICAL-c456t-69a1ecfc159347c47902c57b015900d78bb0a1cf70128fe053fb696d9d41213e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0377-2217(00)00029-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a130_3ay_3a2001_3ai_3a1_3ap_3a147-155.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Pitsoulis, Leonidas S.</creatorcontrib><creatorcontrib>Pardalos, Panos M.</creatorcontrib><creatorcontrib>Hearn, Donald W.</creatorcontrib><title>Approximate solutions to the turbine balancing problem</title><title>European journal of operational research</title><description>The turbine balancing problem (TBP) is an NP-Hard combinatorial optimization problem arising in the manufacturing and maintenance of turbine engines. Exact solution methods for solving the TBP are not appropriate since the problem has to be solved in real time and the input data is itself inaccurate. In this paper the TBP is formulated as a quadratic assignment problem (QAP) and we propose a heuristic algorithm for solving the resulting problem. Computational results on a set of instances provided by Pratt & Whitney (P&W) and from the literature, indicate that the proposed algorithm outperforms the current methods used for solving the TBP, and has the best overall performance with respect to other heuristic algorithms in the literature.</description><subject>Algorithms</subject><subject>Combinatorial optimization</subject><subject>Engines</subject><subject>Heuristic</subject><subject>Heuristics</subject><subject>Optimization</subject><subject>Software</subject><subject>Studies</subject><subject>Theory</subject><subject>Turbine balancing</subject><subject>Turbines</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUF1LwzAUDaLgnP4EofikD9V706ZZn2QMv1DwQX0ObXqrGVtbk0z033u3yV4N3BwI55ybc4Q4RbhEwOLqBTKtUylRnwNcAIAsU9wTI5xomRaTAvbFaEc5FEchzJmECtVIFNNh8P23W1aRktAvVtH1XUhin8QPSuLK166jpK4WVWdd954wuV7Q8lgctNUi0MkfjsXb7c3r7D59er57mE2fUpurIqZFWSHZ1qIqs1zbXJcgrdI1Ly8BGj2pa6jQthpQTloClbV1URZN2eQoMaNsLM62vrz3c0Uhmnm_8h2vNBJyVBxVMUltSdb3IXhqzeA5kP8xCGbdkNk0ZNbxDYDZNGSQdY9bnaeB7E5EfOa9p2C-TFZhBnz_8EjujMGtH3mGNebaoFLmIy7Z7XrrRtzHlyNvgnXUWWqcJxtN07t__vMLvHSFPQ</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>Pitsoulis, Leonidas S.</creator><creator>Pardalos, Panos M.</creator><creator>Hearn, Donald W.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010401</creationdate><title>Approximate solutions to the turbine balancing problem</title><author>Pitsoulis, Leonidas S. ; Pardalos, Panos M. ; Hearn, Donald W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-69a1ecfc159347c47902c57b015900d78bb0a1cf70128fe053fb696d9d41213e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Combinatorial optimization</topic><topic>Engines</topic><topic>Heuristic</topic><topic>Heuristics</topic><topic>Optimization</topic><topic>Software</topic><topic>Studies</topic><topic>Theory</topic><topic>Turbine balancing</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pitsoulis, Leonidas S.</creatorcontrib><creatorcontrib>Pardalos, Panos M.</creatorcontrib><creatorcontrib>Hearn, Donald W.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pitsoulis, Leonidas S.</au><au>Pardalos, Panos M.</au><au>Hearn, Donald W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate solutions to the turbine balancing problem</atitle><jtitle>European journal of operational research</jtitle><date>2001-04-01</date><risdate>2001</risdate><volume>130</volume><issue>1</issue><spage>147</spage><epage>155</epage><pages>147-155</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>The turbine balancing problem (TBP) is an NP-Hard combinatorial optimization problem arising in the manufacturing and maintenance of turbine engines. Exact solution methods for solving the TBP are not appropriate since the problem has to be solved in real time and the input data is itself inaccurate. In this paper the TBP is formulated as a quadratic assignment problem (QAP) and we propose a heuristic algorithm for solving the resulting problem. Computational results on a set of instances provided by Pratt & Whitney (P&W) and from the literature, indicate that the proposed algorithm outperforms the current methods used for solving the TBP, and has the best overall performance with respect to other heuristic algorithms in the literature.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-2217(00)00029-1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 2001-04, Vol.130 (1), p.147-155 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_journals_204150295 |
source | RePEc; Access via ScienceDirect (Elsevier) |
subjects | Algorithms Combinatorial optimization Engines Heuristic Heuristics Optimization Software Studies Theory Turbine balancing Turbines |
title | Approximate solutions to the turbine balancing problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20solutions%20to%20the%20turbine%20balancing%20problem&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Pitsoulis,%20Leonidas%20S.&rft.date=2001-04-01&rft.volume=130&rft.issue=1&rft.spage=147&rft.epage=155&rft.pages=147-155&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/S0377-2217(00)00029-1&rft_dat=%3Cproquest_cross%3E69807362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204150295&rft_id=info:pmid/&rft_els_id=S0377221700000291&rfr_iscdi=true |