Approximate solutions to the turbine balancing problem

The turbine balancing problem (TBP) is an NP-Hard combinatorial optimization problem arising in the manufacturing and maintenance of turbine engines. Exact solution methods for solving the TBP are not appropriate since the problem has to be solved in real time and the input data is itself inaccurate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2001-04, Vol.130 (1), p.147-155
Hauptverfasser: Pitsoulis, Leonidas S., Pardalos, Panos M., Hearn, Donald W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue 1
container_start_page 147
container_title European journal of operational research
container_volume 130
creator Pitsoulis, Leonidas S.
Pardalos, Panos M.
Hearn, Donald W.
description The turbine balancing problem (TBP) is an NP-Hard combinatorial optimization problem arising in the manufacturing and maintenance of turbine engines. Exact solution methods for solving the TBP are not appropriate since the problem has to be solved in real time and the input data is itself inaccurate. In this paper the TBP is formulated as a quadratic assignment problem (QAP) and we propose a heuristic algorithm for solving the resulting problem. Computational results on a set of instances provided by Pratt & Whitney (P&W) and from the literature, indicate that the proposed algorithm outperforms the current methods used for solving the TBP, and has the best overall performance with respect to other heuristic algorithms in the literature.
doi_str_mv 10.1016/S0377-2217(00)00029-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204150295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221700000291</els_id><sourcerecordid>69807362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-69a1ecfc159347c47902c57b015900d78bb0a1cf70128fe053fb696d9d41213e3</originalsourceid><addsrcrecordid>eNqFUF1LwzAUDaLgnP4EofikD9V706ZZn2QMv1DwQX0ObXqrGVtbk0z033u3yV4N3BwI55ybc4Q4RbhEwOLqBTKtUylRnwNcAIAsU9wTI5xomRaTAvbFaEc5FEchzJmECtVIFNNh8P23W1aRktAvVtH1XUhin8QPSuLK166jpK4WVWdd954wuV7Q8lgctNUi0MkfjsXb7c3r7D59er57mE2fUpurIqZFWSHZ1qIqs1zbXJcgrdI1Ly8BGj2pa6jQthpQTloClbV1URZN2eQoMaNsLM62vrz3c0Uhmnm_8h2vNBJyVBxVMUltSdb3IXhqzeA5kP8xCGbdkNk0ZNbxDYDZNGSQdY9bnaeB7E5EfOa9p2C-TFZhBnz_8EjujMGtH3mGNebaoFLmIy7Z7XrrRtzHlyNvgnXUWWqcJxtN07t__vMLvHSFPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204150295</pqid></control><display><type>article</type><title>Approximate solutions to the turbine balancing problem</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Pitsoulis, Leonidas S. ; Pardalos, Panos M. ; Hearn, Donald W.</creator><creatorcontrib>Pitsoulis, Leonidas S. ; Pardalos, Panos M. ; Hearn, Donald W.</creatorcontrib><description>The turbine balancing problem (TBP) is an NP-Hard combinatorial optimization problem arising in the manufacturing and maintenance of turbine engines. Exact solution methods for solving the TBP are not appropriate since the problem has to be solved in real time and the input data is itself inaccurate. In this paper the TBP is formulated as a quadratic assignment problem (QAP) and we propose a heuristic algorithm for solving the resulting problem. Computational results on a set of instances provided by Pratt &amp; Whitney (P&amp;W) and from the literature, indicate that the proposed algorithm outperforms the current methods used for solving the TBP, and has the best overall performance with respect to other heuristic algorithms in the literature.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/S0377-2217(00)00029-1</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Combinatorial optimization ; Engines ; Heuristic ; Heuristics ; Optimization ; Software ; Studies ; Theory ; Turbine balancing ; Turbines</subject><ispartof>European journal of operational research, 2001-04, Vol.130 (1), p.147-155</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Apr 1, 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-69a1ecfc159347c47902c57b015900d78bb0a1cf70128fe053fb696d9d41213e3</citedby><cites>FETCH-LOGICAL-c456t-69a1ecfc159347c47902c57b015900d78bb0a1cf70128fe053fb696d9d41213e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0377-2217(00)00029-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a130_3ay_3a2001_3ai_3a1_3ap_3a147-155.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Pitsoulis, Leonidas S.</creatorcontrib><creatorcontrib>Pardalos, Panos M.</creatorcontrib><creatorcontrib>Hearn, Donald W.</creatorcontrib><title>Approximate solutions to the turbine balancing problem</title><title>European journal of operational research</title><description>The turbine balancing problem (TBP) is an NP-Hard combinatorial optimization problem arising in the manufacturing and maintenance of turbine engines. Exact solution methods for solving the TBP are not appropriate since the problem has to be solved in real time and the input data is itself inaccurate. In this paper the TBP is formulated as a quadratic assignment problem (QAP) and we propose a heuristic algorithm for solving the resulting problem. Computational results on a set of instances provided by Pratt &amp; Whitney (P&amp;W) and from the literature, indicate that the proposed algorithm outperforms the current methods used for solving the TBP, and has the best overall performance with respect to other heuristic algorithms in the literature.</description><subject>Algorithms</subject><subject>Combinatorial optimization</subject><subject>Engines</subject><subject>Heuristic</subject><subject>Heuristics</subject><subject>Optimization</subject><subject>Software</subject><subject>Studies</subject><subject>Theory</subject><subject>Turbine balancing</subject><subject>Turbines</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUF1LwzAUDaLgnP4EofikD9V706ZZn2QMv1DwQX0ObXqrGVtbk0z033u3yV4N3BwI55ybc4Q4RbhEwOLqBTKtUylRnwNcAIAsU9wTI5xomRaTAvbFaEc5FEchzJmECtVIFNNh8P23W1aRktAvVtH1XUhin8QPSuLK166jpK4WVWdd954wuV7Q8lgctNUi0MkfjsXb7c3r7D59er57mE2fUpurIqZFWSHZ1qIqs1zbXJcgrdI1Ly8BGj2pa6jQthpQTloClbV1URZN2eQoMaNsLM62vrz3c0Uhmnm_8h2vNBJyVBxVMUltSdb3IXhqzeA5kP8xCGbdkNk0ZNbxDYDZNGSQdY9bnaeB7E5EfOa9p2C-TFZhBnz_8EjujMGtH3mGNebaoFLmIy7Z7XrrRtzHlyNvgnXUWWqcJxtN07t__vMLvHSFPQ</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>Pitsoulis, Leonidas S.</creator><creator>Pardalos, Panos M.</creator><creator>Hearn, Donald W.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010401</creationdate><title>Approximate solutions to the turbine balancing problem</title><author>Pitsoulis, Leonidas S. ; Pardalos, Panos M. ; Hearn, Donald W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-69a1ecfc159347c47902c57b015900d78bb0a1cf70128fe053fb696d9d41213e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Combinatorial optimization</topic><topic>Engines</topic><topic>Heuristic</topic><topic>Heuristics</topic><topic>Optimization</topic><topic>Software</topic><topic>Studies</topic><topic>Theory</topic><topic>Turbine balancing</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pitsoulis, Leonidas S.</creatorcontrib><creatorcontrib>Pardalos, Panos M.</creatorcontrib><creatorcontrib>Hearn, Donald W.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pitsoulis, Leonidas S.</au><au>Pardalos, Panos M.</au><au>Hearn, Donald W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate solutions to the turbine balancing problem</atitle><jtitle>European journal of operational research</jtitle><date>2001-04-01</date><risdate>2001</risdate><volume>130</volume><issue>1</issue><spage>147</spage><epage>155</epage><pages>147-155</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>The turbine balancing problem (TBP) is an NP-Hard combinatorial optimization problem arising in the manufacturing and maintenance of turbine engines. Exact solution methods for solving the TBP are not appropriate since the problem has to be solved in real time and the input data is itself inaccurate. In this paper the TBP is formulated as a quadratic assignment problem (QAP) and we propose a heuristic algorithm for solving the resulting problem. Computational results on a set of instances provided by Pratt &amp; Whitney (P&amp;W) and from the literature, indicate that the proposed algorithm outperforms the current methods used for solving the TBP, and has the best overall performance with respect to other heuristic algorithms in the literature.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-2217(00)00029-1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2001-04, Vol.130 (1), p.147-155
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204150295
source RePEc; Access via ScienceDirect (Elsevier)
subjects Algorithms
Combinatorial optimization
Engines
Heuristic
Heuristics
Optimization
Software
Studies
Theory
Turbine balancing
Turbines
title Approximate solutions to the turbine balancing problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20solutions%20to%20the%20turbine%20balancing%20problem&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Pitsoulis,%20Leonidas%20S.&rft.date=2001-04-01&rft.volume=130&rft.issue=1&rft.spage=147&rft.epage=155&rft.pages=147-155&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/S0377-2217(00)00029-1&rft_dat=%3Cproquest_cross%3E69807362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204150295&rft_id=info:pmid/&rft_els_id=S0377221700000291&rfr_iscdi=true