Mathematical programming based heuristics for improving LP-generated classifiers for the multiclass supervised classification problem

Mathematical programming is used as a nonparametric approach to supervised classification. However, mathematical programming formulations that minimize the number of misclassifications on the design dataset suffer from computational difficulties. We present mathematical programming based heuristics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2006, Vol.168 (1), p.181-199
Hauptverfasser: Adem, Jan, Gochet, Willy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue 1
container_start_page 181
container_title European journal of operational research
container_volume 168
creator Adem, Jan
Gochet, Willy
description Mathematical programming is used as a nonparametric approach to supervised classification. However, mathematical programming formulations that minimize the number of misclassifications on the design dataset suffer from computational difficulties. We present mathematical programming based heuristics for finding classifiers with a small number of misclassifications on the design dataset with multiple classes. The basic idea is to improve an LP-generated classifier with respect to the number of misclassifications on the design dataset. The heuristics are evaluated computationally on both simulated and real world datasets.
doi_str_mv 10.1016/j.ejor.2004.04.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204150162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221704003108</els_id><sourcerecordid>820153061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-17247617d3c4ad6c67dc058592a836b1c52b5275e615ce4ef4b527a3896cee293</originalsourceid><addsrcrecordid>eNp9UMvK1DAUDqLg-OsLuCruO-YkTdKCG_nxhiO60HXIpKczKb2ZtAP_A_jenlARV4aTHJLzXcLH2EvgR-CgX_dH7Od4FJxXx1wSHrED1EaUutb8MTtwaUwpBJin7FlKPeccFKgD-_XFrVcc3Rq8G4olzpfoxjFMl-LsErbFFbcYEk1T0c2xCCNBbnl8-lZecMLoVkL5waUUuoBxh5FkMW4D0fKgSNuC8RbSP0hPjvOUDc8Djs_Zk84NCV_86Xfsx_t33-8_lqevHz7dvz2VXjZqLcGIymgwrfSVa7XXpvVc1aoRrpb6DF6JsxJGoQblscKuylcn60Z7RNHIO_Zq1yXfnxum1fbzFieytIJXoChKQSCxg3ycU4rY2SWG0cUHC9zmtG1vc9o2p21zSSDS550UcUH_l4G0CIrJ3qx0oGs6H2gTVVML-ZH2knsNFprGXteR1N7sakhh3ChWm3zAyWMbIvrVtnP432d-A6CGpTU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204150162</pqid></control><display><type>article</type><title>Mathematical programming based heuristics for improving LP-generated classifiers for the multiclass supervised classification problem</title><source>RePEc</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Adem, Jan ; Gochet, Willy</creator><creatorcontrib>Adem, Jan ; Gochet, Willy</creatorcontrib><description>Mathematical programming is used as a nonparametric approach to supervised classification. However, mathematical programming formulations that minimize the number of misclassifications on the design dataset suffer from computational difficulties. We present mathematical programming based heuristics for finding classifiers with a small number of misclassifications on the design dataset with multiple classes. The basic idea is to improve an LP-generated classifier with respect to the number of misclassifications on the design dataset. The heuristics are evaluated computationally on both simulated and real world datasets.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2004.04.031</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Datasets ; Heuristic ; Heuristics ; Mathematical programming ; Mixed integer linear programming ; Studies ; Supervised classification</subject><ispartof>European journal of operational research, 2006, Vol.168 (1), p.181-199</ispartof><rights>2004 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jan 1, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-17247617d3c4ad6c67dc058592a836b1c52b5275e615ce4ef4b527a3896cee293</citedby><cites>FETCH-LOGICAL-c395t-17247617d3c4ad6c67dc058592a836b1c52b5275e615ce4ef4b527a3896cee293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2004.04.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,4007,4023,27922,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a168_3ay_3a2006_3ai_3a1_3ap_3a181-199.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Adem, Jan</creatorcontrib><creatorcontrib>Gochet, Willy</creatorcontrib><title>Mathematical programming based heuristics for improving LP-generated classifiers for the multiclass supervised classification problem</title><title>European journal of operational research</title><description>Mathematical programming is used as a nonparametric approach to supervised classification. However, mathematical programming formulations that minimize the number of misclassifications on the design dataset suffer from computational difficulties. We present mathematical programming based heuristics for finding classifiers with a small number of misclassifications on the design dataset with multiple classes. The basic idea is to improve an LP-generated classifier with respect to the number of misclassifications on the design dataset. The heuristics are evaluated computationally on both simulated and real world datasets.</description><subject>Datasets</subject><subject>Heuristic</subject><subject>Heuristics</subject><subject>Mathematical programming</subject><subject>Mixed integer linear programming</subject><subject>Studies</subject><subject>Supervised classification</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UMvK1DAUDqLg-OsLuCruO-YkTdKCG_nxhiO60HXIpKczKb2ZtAP_A_jenlARV4aTHJLzXcLH2EvgR-CgX_dH7Od4FJxXx1wSHrED1EaUutb8MTtwaUwpBJin7FlKPeccFKgD-_XFrVcc3Rq8G4olzpfoxjFMl-LsErbFFbcYEk1T0c2xCCNBbnl8-lZecMLoVkL5waUUuoBxh5FkMW4D0fKgSNuC8RbSP0hPjvOUDc8Djs_Zk84NCV_86Xfsx_t33-8_lqevHz7dvz2VXjZqLcGIymgwrfSVa7XXpvVc1aoRrpb6DF6JsxJGoQblscKuylcn60Z7RNHIO_Zq1yXfnxum1fbzFieytIJXoChKQSCxg3ycU4rY2SWG0cUHC9zmtG1vc9o2p21zSSDS550UcUH_l4G0CIrJ3qx0oGs6H2gTVVML-ZH2knsNFprGXteR1N7sakhh3ChWm3zAyWMbIvrVtnP432d-A6CGpTU</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Adem, Jan</creator><creator>Gochet, Willy</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2006</creationdate><title>Mathematical programming based heuristics for improving LP-generated classifiers for the multiclass supervised classification problem</title><author>Adem, Jan ; Gochet, Willy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-17247617d3c4ad6c67dc058592a836b1c52b5275e615ce4ef4b527a3896cee293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Datasets</topic><topic>Heuristic</topic><topic>Heuristics</topic><topic>Mathematical programming</topic><topic>Mixed integer linear programming</topic><topic>Studies</topic><topic>Supervised classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adem, Jan</creatorcontrib><creatorcontrib>Gochet, Willy</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adem, Jan</au><au>Gochet, Willy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical programming based heuristics for improving LP-generated classifiers for the multiclass supervised classification problem</atitle><jtitle>European journal of operational research</jtitle><date>2006</date><risdate>2006</risdate><volume>168</volume><issue>1</issue><spage>181</spage><epage>199</epage><pages>181-199</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>Mathematical programming is used as a nonparametric approach to supervised classification. However, mathematical programming formulations that minimize the number of misclassifications on the design dataset suffer from computational difficulties. We present mathematical programming based heuristics for finding classifiers with a small number of misclassifications on the design dataset with multiple classes. The basic idea is to improve an LP-generated classifier with respect to the number of misclassifications on the design dataset. The heuristics are evaluated computationally on both simulated and real world datasets.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2004.04.031</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2006, Vol.168 (1), p.181-199
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204150162
source RePEc; ScienceDirect Journals (5 years ago - present)
subjects Datasets
Heuristic
Heuristics
Mathematical programming
Mixed integer linear programming
Studies
Supervised classification
title Mathematical programming based heuristics for improving LP-generated classifiers for the multiclass supervised classification problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20programming%20based%20heuristics%20for%20improving%20LP-generated%20classifiers%20for%20the%20multiclass%20supervised%20classification%20problem&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Adem,%20Jan&rft.date=2006&rft.volume=168&rft.issue=1&rft.spage=181&rft.epage=199&rft.pages=181-199&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2004.04.031&rft_dat=%3Cproquest_cross%3E820153061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204150162&rft_id=info:pmid/&rft_els_id=S0377221704003108&rfr_iscdi=true