Mathematical programming based heuristics for improving LP-generated classifiers for the multiclass supervised classification problem
Mathematical programming is used as a nonparametric approach to supervised classification. However, mathematical programming formulations that minimize the number of misclassifications on the design dataset suffer from computational difficulties. We present mathematical programming based heuristics...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 2006, Vol.168 (1), p.181-199 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | 1 |
container_start_page | 181 |
container_title | European journal of operational research |
container_volume | 168 |
creator | Adem, Jan Gochet, Willy |
description | Mathematical programming is used as a nonparametric approach to supervised classification. However, mathematical programming formulations that minimize the number of misclassifications on the design dataset suffer from computational difficulties. We present mathematical programming based heuristics for finding classifiers with a small number of misclassifications on the design dataset with multiple classes. The basic idea is to improve an LP-generated classifier with respect to the number of misclassifications on the design dataset. The heuristics are evaluated computationally on both simulated and real world datasets. |
doi_str_mv | 10.1016/j.ejor.2004.04.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204150162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221704003108</els_id><sourcerecordid>820153061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-17247617d3c4ad6c67dc058592a836b1c52b5275e615ce4ef4b527a3896cee293</originalsourceid><addsrcrecordid>eNp9UMvK1DAUDqLg-OsLuCruO-YkTdKCG_nxhiO60HXIpKczKb2ZtAP_A_jenlARV4aTHJLzXcLH2EvgR-CgX_dH7Od4FJxXx1wSHrED1EaUutb8MTtwaUwpBJin7FlKPeccFKgD-_XFrVcc3Rq8G4olzpfoxjFMl-LsErbFFbcYEk1T0c2xCCNBbnl8-lZecMLoVkL5waUUuoBxh5FkMW4D0fKgSNuC8RbSP0hPjvOUDc8Djs_Zk84NCV_86Xfsx_t33-8_lqevHz7dvz2VXjZqLcGIymgwrfSVa7XXpvVc1aoRrpb6DF6JsxJGoQblscKuylcn60Z7RNHIO_Zq1yXfnxum1fbzFieytIJXoChKQSCxg3ycU4rY2SWG0cUHC9zmtG1vc9o2p21zSSDS550UcUH_l4G0CIrJ3qx0oGs6H2gTVVML-ZH2knsNFprGXteR1N7sakhh3ChWm3zAyWMbIvrVtnP432d-A6CGpTU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204150162</pqid></control><display><type>article</type><title>Mathematical programming based heuristics for improving LP-generated classifiers for the multiclass supervised classification problem</title><source>RePEc</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Adem, Jan ; Gochet, Willy</creator><creatorcontrib>Adem, Jan ; Gochet, Willy</creatorcontrib><description>Mathematical programming is used as a nonparametric approach to supervised classification. However, mathematical programming formulations that minimize the number of misclassifications on the design dataset suffer from computational difficulties. We present mathematical programming based heuristics for finding classifiers with a small number of misclassifications on the design dataset with multiple classes. The basic idea is to improve an LP-generated classifier with respect to the number of misclassifications on the design dataset. The heuristics are evaluated computationally on both simulated and real world datasets.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2004.04.031</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Datasets ; Heuristic ; Heuristics ; Mathematical programming ; Mixed integer linear programming ; Studies ; Supervised classification</subject><ispartof>European journal of operational research, 2006, Vol.168 (1), p.181-199</ispartof><rights>2004 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jan 1, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-17247617d3c4ad6c67dc058592a836b1c52b5275e615ce4ef4b527a3896cee293</citedby><cites>FETCH-LOGICAL-c395t-17247617d3c4ad6c67dc058592a836b1c52b5275e615ce4ef4b527a3896cee293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2004.04.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,4007,4023,27922,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a168_3ay_3a2006_3ai_3a1_3ap_3a181-199.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Adem, Jan</creatorcontrib><creatorcontrib>Gochet, Willy</creatorcontrib><title>Mathematical programming based heuristics for improving LP-generated classifiers for the multiclass supervised classification problem</title><title>European journal of operational research</title><description>Mathematical programming is used as a nonparametric approach to supervised classification. However, mathematical programming formulations that minimize the number of misclassifications on the design dataset suffer from computational difficulties. We present mathematical programming based heuristics for finding classifiers with a small number of misclassifications on the design dataset with multiple classes. The basic idea is to improve an LP-generated classifier with respect to the number of misclassifications on the design dataset. The heuristics are evaluated computationally on both simulated and real world datasets.</description><subject>Datasets</subject><subject>Heuristic</subject><subject>Heuristics</subject><subject>Mathematical programming</subject><subject>Mixed integer linear programming</subject><subject>Studies</subject><subject>Supervised classification</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UMvK1DAUDqLg-OsLuCruO-YkTdKCG_nxhiO60HXIpKczKb2ZtAP_A_jenlARV4aTHJLzXcLH2EvgR-CgX_dH7Od4FJxXx1wSHrED1EaUutb8MTtwaUwpBJin7FlKPeccFKgD-_XFrVcc3Rq8G4olzpfoxjFMl-LsErbFFbcYEk1T0c2xCCNBbnl8-lZecMLoVkL5waUUuoBxh5FkMW4D0fKgSNuC8RbSP0hPjvOUDc8Djs_Zk84NCV_86Xfsx_t33-8_lqevHz7dvz2VXjZqLcGIymgwrfSVa7XXpvVc1aoRrpb6DF6JsxJGoQblscKuylcn60Z7RNHIO_Zq1yXfnxum1fbzFieytIJXoChKQSCxg3ycU4rY2SWG0cUHC9zmtG1vc9o2p21zSSDS550UcUH_l4G0CIrJ3qx0oGs6H2gTVVML-ZH2knsNFprGXteR1N7sakhh3ChWm3zAyWMbIvrVtnP432d-A6CGpTU</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Adem, Jan</creator><creator>Gochet, Willy</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2006</creationdate><title>Mathematical programming based heuristics for improving LP-generated classifiers for the multiclass supervised classification problem</title><author>Adem, Jan ; Gochet, Willy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-17247617d3c4ad6c67dc058592a836b1c52b5275e615ce4ef4b527a3896cee293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Datasets</topic><topic>Heuristic</topic><topic>Heuristics</topic><topic>Mathematical programming</topic><topic>Mixed integer linear programming</topic><topic>Studies</topic><topic>Supervised classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adem, Jan</creatorcontrib><creatorcontrib>Gochet, Willy</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adem, Jan</au><au>Gochet, Willy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical programming based heuristics for improving LP-generated classifiers for the multiclass supervised classification problem</atitle><jtitle>European journal of operational research</jtitle><date>2006</date><risdate>2006</risdate><volume>168</volume><issue>1</issue><spage>181</spage><epage>199</epage><pages>181-199</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>Mathematical programming is used as a nonparametric approach to supervised classification. However, mathematical programming formulations that minimize the number of misclassifications on the design dataset suffer from computational difficulties. We present mathematical programming based heuristics for finding classifiers with a small number of misclassifications on the design dataset with multiple classes. The basic idea is to improve an LP-generated classifier with respect to the number of misclassifications on the design dataset. The heuristics are evaluated computationally on both simulated and real world datasets.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2004.04.031</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 2006, Vol.168 (1), p.181-199 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_journals_204150162 |
source | RePEc; ScienceDirect Journals (5 years ago - present) |
subjects | Datasets Heuristic Heuristics Mathematical programming Mixed integer linear programming Studies Supervised classification |
title | Mathematical programming based heuristics for improving LP-generated classifiers for the multiclass supervised classification problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20programming%20based%20heuristics%20for%20improving%20LP-generated%20classifiers%20for%20the%20multiclass%20supervised%20classification%20problem&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Adem,%20Jan&rft.date=2006&rft.volume=168&rft.issue=1&rft.spage=181&rft.epage=199&rft.pages=181-199&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2004.04.031&rft_dat=%3Cproquest_cross%3E820153061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204150162&rft_id=info:pmid/&rft_els_id=S0377221704003108&rfr_iscdi=true |