POPMUSIC for the point feature label placement problem

Point feature label placement is the problem of placing text labels adjacent to point features on a map so as to maximize legibility. The goal is to choose positions for the labels that do not give rise to label overlaps and that minimize obscuration of features. A practical goal is to minimize the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2009-01, Vol.192 (2), p.396-413
Hauptverfasser: Alvim, Adriana C.F., Taillard, Éric D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 413
container_issue 2
container_start_page 396
container_title European journal of operational research
container_volume 192
creator Alvim, Adriana C.F.
Taillard, Éric D.
description Point feature label placement is the problem of placing text labels adjacent to point features on a map so as to maximize legibility. The goal is to choose positions for the labels that do not give rise to label overlaps and that minimize obscuration of features. A practical goal is to minimize the number of overlaps while considering cartographic preferences. This article proposes a new heuristic for solving the point feature label placement problem based on the application of the POPMUSIC frame. Computational experiments show that the proposed heuristic outperformed other recent metaheuristics approaches in the literature. Experiments with problem instances involving up to 10 million points show that the computational time of the proposed heuristic increases almost linearly with the problem size. New problem instances based on real data with more than 13,000 labels are proposed.
doi_str_mv 10.1016/j.ejor.2007.10.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204148270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221707010041</els_id><sourcerecordid>1563367501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-d28b807dbc9132facec9b08614070133bdae4da743499dcffe6917a835b5573f3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPBXBY9fJR5sWvMjiF64oqOeQphNs6W5r0hX23ztlxaOBlwnDe28mj7FzDgsOPL9qF9j2YSEANDUWAOKAzXihRZoXORyyGUitUyG4PmYnMbYAwDOezVj--vL6_PH2uEx8H5LxE5OhbzZj4tGO24BJZyvskqGzDtdI_SH0VYfrU3bkbRfx7LfO2cfd7fvyIV293D8ub1apy1Q2prUoqgJ0XbmSS-HJxJUVFDlXoIFLWdUWVW21kqosa-c95iXXtpBZlWVaejlnF3tfmvu1xTiatt-GDY00AhRXhdBAJLEnudDHGNCbITRrG3aGg5niMa2Z4jFTPFOP4iHR014UcED3p0A6RMVovo20vBR07wgkLak005MwEGSZG8Wl-RzX5Hb5u6eNznY-2I1r4p-roO8qyBTxrvc8pNC-GwwmugY3DusmoBtN3Tf_Lf0D42SSjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204148270</pqid></control><display><type>article</type><title>POPMUSIC for the point feature label placement problem</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Alvim, Adriana C.F. ; Taillard, Éric D.</creator><creatorcontrib>Alvim, Adriana C.F. ; Taillard, Éric D.</creatorcontrib><description>Point feature label placement is the problem of placing text labels adjacent to point features on a map so as to maximize legibility. The goal is to choose positions for the labels that do not give rise to label overlaps and that minimize obscuration of features. A practical goal is to minimize the number of overlaps while considering cartographic preferences. This article proposes a new heuristic for solving the point feature label placement problem based on the application of the POPMUSIC frame. Computational experiments show that the proposed heuristic outperformed other recent metaheuristics approaches in the literature. Experiments with problem instances involving up to 10 million points show that the computational time of the proposed heuristic increases almost linearly with the problem size. New problem instances based on real data with more than 13,000 labels are proposed.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2007.10.002</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Artificial intelligence ; Cartography ; Computer science; control theory; systems ; Exact sciences and technology ; Heuristic ; Labeling ; Large-scale optimization ; Map labeling ; Metaheuristics ; Metaheuristics POPMUSIC Map labeling Large-scale optimization Tabu search ; Pattern recognition. Digital image processing. Computational geometry ; POPMUSIC ; Popular music ; Preferences ; Studies ; Tabu search</subject><ispartof>European journal of operational research, 2009-01, Vol.192 (2), p.396-413</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jan 16, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-d28b807dbc9132facec9b08614070133bdae4da743499dcffe6917a835b5573f3</citedby><cites>FETCH-LOGICAL-c545t-d28b807dbc9132facec9b08614070133bdae4da743499dcffe6917a835b5573f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2007.10.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20704054$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a192_3ay_3a2009_3ai_3a2_3ap_3a396-413.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Alvim, Adriana C.F.</creatorcontrib><creatorcontrib>Taillard, Éric D.</creatorcontrib><title>POPMUSIC for the point feature label placement problem</title><title>European journal of operational research</title><description>Point feature label placement is the problem of placing text labels adjacent to point features on a map so as to maximize legibility. The goal is to choose positions for the labels that do not give rise to label overlaps and that minimize obscuration of features. A practical goal is to minimize the number of overlaps while considering cartographic preferences. This article proposes a new heuristic for solving the point feature label placement problem based on the application of the POPMUSIC frame. Computational experiments show that the proposed heuristic outperformed other recent metaheuristics approaches in the literature. Experiments with problem instances involving up to 10 million points show that the computational time of the proposed heuristic increases almost linearly with the problem size. New problem instances based on real data with more than 13,000 labels are proposed.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Cartography</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Heuristic</subject><subject>Labeling</subject><subject>Large-scale optimization</subject><subject>Map labeling</subject><subject>Metaheuristics</subject><subject>Metaheuristics POPMUSIC Map labeling Large-scale optimization Tabu search</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>POPMUSIC</subject><subject>Popular music</subject><subject>Preferences</subject><subject>Studies</subject><subject>Tabu search</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UE1LxDAQDaLguvoHPBXBY9fJR5sWvMjiF64oqOeQphNs6W5r0hX23ztlxaOBlwnDe28mj7FzDgsOPL9qF9j2YSEANDUWAOKAzXihRZoXORyyGUitUyG4PmYnMbYAwDOezVj--vL6_PH2uEx8H5LxE5OhbzZj4tGO24BJZyvskqGzDtdI_SH0VYfrU3bkbRfx7LfO2cfd7fvyIV293D8ub1apy1Q2prUoqgJ0XbmSS-HJxJUVFDlXoIFLWdUWVW21kqosa-c95iXXtpBZlWVaejlnF3tfmvu1xTiatt-GDY00AhRXhdBAJLEnudDHGNCbITRrG3aGg5niMa2Z4jFTPFOP4iHR014UcED3p0A6RMVovo20vBR07wgkLak005MwEGSZG8Wl-RzX5Hb5u6eNznY-2I1r4p-roO8qyBTxrvc8pNC-GwwmugY3DusmoBtN3Tf_Lf0D42SSjA</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Alvim, Adriana C.F.</creator><creator>Taillard, Éric D.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200901</creationdate><title>POPMUSIC for the point feature label placement problem</title><author>Alvim, Adriana C.F. ; Taillard, Éric D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-d28b807dbc9132facec9b08614070133bdae4da743499dcffe6917a835b5573f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Cartography</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Heuristic</topic><topic>Labeling</topic><topic>Large-scale optimization</topic><topic>Map labeling</topic><topic>Metaheuristics</topic><topic>Metaheuristics POPMUSIC Map labeling Large-scale optimization Tabu search</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>POPMUSIC</topic><topic>Popular music</topic><topic>Preferences</topic><topic>Studies</topic><topic>Tabu search</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alvim, Adriana C.F.</creatorcontrib><creatorcontrib>Taillard, Éric D.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alvim, Adriana C.F.</au><au>Taillard, Éric D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>POPMUSIC for the point feature label placement problem</atitle><jtitle>European journal of operational research</jtitle><date>2009-01</date><risdate>2009</risdate><volume>192</volume><issue>2</issue><spage>396</spage><epage>413</epage><pages>396-413</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>Point feature label placement is the problem of placing text labels adjacent to point features on a map so as to maximize legibility. The goal is to choose positions for the labels that do not give rise to label overlaps and that minimize obscuration of features. A practical goal is to minimize the number of overlaps while considering cartographic preferences. This article proposes a new heuristic for solving the point feature label placement problem based on the application of the POPMUSIC frame. Computational experiments show that the proposed heuristic outperformed other recent metaheuristics approaches in the literature. Experiments with problem instances involving up to 10 million points show that the computational time of the proposed heuristic increases almost linearly with the problem size. New problem instances based on real data with more than 13,000 labels are proposed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2007.10.002</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2009-01, Vol.192 (2), p.396-413
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204148270
source RePEc; Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Artificial intelligence
Cartography
Computer science
control theory
systems
Exact sciences and technology
Heuristic
Labeling
Large-scale optimization
Map labeling
Metaheuristics
Metaheuristics POPMUSIC Map labeling Large-scale optimization Tabu search
Pattern recognition. Digital image processing. Computational geometry
POPMUSIC
Popular music
Preferences
Studies
Tabu search
title POPMUSIC for the point feature label placement problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=POPMUSIC%20for%20the%20point%20feature%20label%20placement%20problem&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Alvim,%20Adriana%20C.F.&rft.date=2009-01&rft.volume=192&rft.issue=2&rft.spage=396&rft.epage=413&rft.pages=396-413&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2007.10.002&rft_dat=%3Cproquest_cross%3E1563367501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204148270&rft_id=info:pmid/&rft_els_id=S0377221707010041&rfr_iscdi=true