Supply chain design under uncertainty using sample average approximation and dual decomposition

We present a supply chain design problem modeled as a sequence of splitting and combining processes. We formulate the problem as a two-stage stochastic program. The first-stage decisions are strategic location decisions, whereas the second stage consists of operational decisions. The objective is to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2009-12, Vol.199 (2), p.409-419
Hauptverfasser: Schütz, Peter, Tomasgard, Asgeir, Ahmed, Shabbir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 419
container_issue 2
container_start_page 409
container_title European journal of operational research
container_volume 199
creator Schütz, Peter
Tomasgard, Asgeir
Ahmed, Shabbir
description We present a supply chain design problem modeled as a sequence of splitting and combining processes. We formulate the problem as a two-stage stochastic program. The first-stage decisions are strategic location decisions, whereas the second stage consists of operational decisions. The objective is to minimize the sum of investment costs and expected costs of operating the supply chain. In particular the model emphasizes the importance of operational flexibility when making strategic decisions. For that reason short-term uncertainty is considered as well as long-term uncertainty. The real-world case used to illustrate the model is from the Norwegian meat industry. We solve the problem by sample average approximation in combination with dual decomposition. Computational results are presented for different sample sizes and different levels of data aggregation in the second stage.
doi_str_mv 10.1016/j.ejor.2008.11.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204146122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037722170801031X</els_id><sourcerecordid>1719229351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-ba6b3bcab6888e4f19a68d82a326c540ac2f94a32256d2006aacd643d8c595a03</originalsourceid><addsrcrecordid>eNp9UVGL1DAQDqLgevoHfCqCj62ZNM2m4IscnooHPqjPYTaZ7qV025q0i_vvnbLHPRqYzGT4vsmXL0K8BVmBBPOhr6ifUqWktBVAJbV8JnZg96o01sjnYifr_b5UCvYvxauceyklNNDshPu5zvNwKfwDxrEIlONxLNYxUOLdU1q4vVyKNcfxWGQ8zQMVeKaER87znKa_8YRLnMYCx1CEFQce4qfTPOW4tV-LFx0Omd485hvx--7zr9uv5f2PL99uP92XXjdmKQ9oDvXB48FYa0l30KKxwSqslfGNluhV12o-qcYEfqVB9MHoOljftA3K-ka8u85lSX9WyovrpzWNfKVTUoM2oBSD1BXk05Rzos7NieWniwPpNh9d7zYf3eajA3DsI5O-X0mJZvJPDOLFUMru7GqEtuX9wsHUrYxbyTFzaO5oaN3DcuJp7x91YvY4dAlHH_PTVAVNbXW7Sf14xRGbdo6UXPaR-EdCTOQXF6b4P9H_AAE1o8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204146122</pqid></control><display><type>article</type><title>Supply chain design under uncertainty using sample average approximation and dual decomposition</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Schütz, Peter ; Tomasgard, Asgeir ; Ahmed, Shabbir</creator><creatorcontrib>Schütz, Peter ; Tomasgard, Asgeir ; Ahmed, Shabbir</creatorcontrib><description>We present a supply chain design problem modeled as a sequence of splitting and combining processes. We formulate the problem as a two-stage stochastic program. The first-stage decisions are strategic location decisions, whereas the second stage consists of operational decisions. The objective is to minimize the sum of investment costs and expected costs of operating the supply chain. In particular the model emphasizes the importance of operational flexibility when making strategic decisions. For that reason short-term uncertainty is considered as well as long-term uncertainty. The real-world case used to illustrate the model is from the Norwegian meat industry. We solve the problem by sample average approximation in combination with dual decomposition. Computational results are presented for different sample sizes and different levels of data aggregation in the second stage.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2008.11.040</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Approximation ; Decision theory. Utility theory ; Dual decomposition ; Exact sciences and technology ; Logistics ; Mathematical programming ; Meat industry ; Operating costs ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Sample average approximation ; Stochastic models ; Stochastic programming ; Studies ; Supply chain design ; Supply chain design Stochastic programming Sample average approximation Dual decomposition ; Supply chains ; Uncertainty</subject><ispartof>European journal of operational research, 2009-12, Vol.199 (2), p.409-419</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Dec 1, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-ba6b3bcab6888e4f19a68d82a326c540ac2f94a32256d2006aacd643d8c595a03</citedby><cites>FETCH-LOGICAL-c456t-ba6b3bcab6888e4f19a68d82a326c540ac2f94a32256d2006aacd643d8c595a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S037722170801031X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21538492$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a199_3ay_3a2009_3ai_3a2_3ap_3a409-419.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Schütz, Peter</creatorcontrib><creatorcontrib>Tomasgard, Asgeir</creatorcontrib><creatorcontrib>Ahmed, Shabbir</creatorcontrib><title>Supply chain design under uncertainty using sample average approximation and dual decomposition</title><title>European journal of operational research</title><description>We present a supply chain design problem modeled as a sequence of splitting and combining processes. We formulate the problem as a two-stage stochastic program. The first-stage decisions are strategic location decisions, whereas the second stage consists of operational decisions. The objective is to minimize the sum of investment costs and expected costs of operating the supply chain. In particular the model emphasizes the importance of operational flexibility when making strategic decisions. For that reason short-term uncertainty is considered as well as long-term uncertainty. The real-world case used to illustrate the model is from the Norwegian meat industry. We solve the problem by sample average approximation in combination with dual decomposition. Computational results are presented for different sample sizes and different levels of data aggregation in the second stage.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Decision theory. Utility theory</subject><subject>Dual decomposition</subject><subject>Exact sciences and technology</subject><subject>Logistics</subject><subject>Mathematical programming</subject><subject>Meat industry</subject><subject>Operating costs</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Sample average approximation</subject><subject>Stochastic models</subject><subject>Stochastic programming</subject><subject>Studies</subject><subject>Supply chain design</subject><subject>Supply chain design Stochastic programming Sample average approximation Dual decomposition</subject><subject>Supply chains</subject><subject>Uncertainty</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UVGL1DAQDqLgevoHfCqCj62ZNM2m4IscnooHPqjPYTaZ7qV025q0i_vvnbLHPRqYzGT4vsmXL0K8BVmBBPOhr6ifUqWktBVAJbV8JnZg96o01sjnYifr_b5UCvYvxauceyklNNDshPu5zvNwKfwDxrEIlONxLNYxUOLdU1q4vVyKNcfxWGQ8zQMVeKaER87znKa_8YRLnMYCx1CEFQce4qfTPOW4tV-LFx0Omd485hvx--7zr9uv5f2PL99uP92XXjdmKQ9oDvXB48FYa0l30KKxwSqslfGNluhV12o-qcYEfqVB9MHoOljftA3K-ka8u85lSX9WyovrpzWNfKVTUoM2oBSD1BXk05Rzos7NieWniwPpNh9d7zYf3eajA3DsI5O-X0mJZvJPDOLFUMru7GqEtuX9wsHUrYxbyTFzaO5oaN3DcuJp7x91YvY4dAlHH_PTVAVNbXW7Sf14xRGbdo6UXPaR-EdCTOQXF6b4P9H_AAE1o8M</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Schütz, Peter</creator><creator>Tomasgard, Asgeir</creator><creator>Ahmed, Shabbir</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091201</creationdate><title>Supply chain design under uncertainty using sample average approximation and dual decomposition</title><author>Schütz, Peter ; Tomasgard, Asgeir ; Ahmed, Shabbir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-ba6b3bcab6888e4f19a68d82a326c540ac2f94a32256d2006aacd643d8c595a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Decision theory. Utility theory</topic><topic>Dual decomposition</topic><topic>Exact sciences and technology</topic><topic>Logistics</topic><topic>Mathematical programming</topic><topic>Meat industry</topic><topic>Operating costs</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Sample average approximation</topic><topic>Stochastic models</topic><topic>Stochastic programming</topic><topic>Studies</topic><topic>Supply chain design</topic><topic>Supply chain design Stochastic programming Sample average approximation Dual decomposition</topic><topic>Supply chains</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schütz, Peter</creatorcontrib><creatorcontrib>Tomasgard, Asgeir</creatorcontrib><creatorcontrib>Ahmed, Shabbir</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schütz, Peter</au><au>Tomasgard, Asgeir</au><au>Ahmed, Shabbir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supply chain design under uncertainty using sample average approximation and dual decomposition</atitle><jtitle>European journal of operational research</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>199</volume><issue>2</issue><spage>409</spage><epage>419</epage><pages>409-419</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>We present a supply chain design problem modeled as a sequence of splitting and combining processes. We formulate the problem as a two-stage stochastic program. The first-stage decisions are strategic location decisions, whereas the second stage consists of operational decisions. The objective is to minimize the sum of investment costs and expected costs of operating the supply chain. In particular the model emphasizes the importance of operational flexibility when making strategic decisions. For that reason short-term uncertainty is considered as well as long-term uncertainty. The real-world case used to illustrate the model is from the Norwegian meat industry. We solve the problem by sample average approximation in combination with dual decomposition. Computational results are presented for different sample sizes and different levels of data aggregation in the second stage.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2008.11.040</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2009-12, Vol.199 (2), p.409-419
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204146122
source RePEc; Elsevier ScienceDirect Journals
subjects Applied sciences
Approximation
Decision theory. Utility theory
Dual decomposition
Exact sciences and technology
Logistics
Mathematical programming
Meat industry
Operating costs
Operational research and scientific management
Operational research. Management science
Operations research
Sample average approximation
Stochastic models
Stochastic programming
Studies
Supply chain design
Supply chain design Stochastic programming Sample average approximation Dual decomposition
Supply chains
Uncertainty
title Supply chain design under uncertainty using sample average approximation and dual decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supply%20chain%20design%20under%20uncertainty%20using%20sample%20average%20approximation%20and%20dual%20decomposition&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Sch%C3%BCtz,%20Peter&rft.date=2009-12-01&rft.volume=199&rft.issue=2&rft.spage=409&rft.epage=419&rft.pages=409-419&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2008.11.040&rft_dat=%3Cproquest_cross%3E1719229351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204146122&rft_id=info:pmid/&rft_els_id=S037722170801031X&rfr_iscdi=true