Scheduling elective surgery under uncertainty and downstream capacity constraints
The objective of this study is to generate an optimal surgery schedule of elective surgery patients with uncertain surgery operations, which includes uncertainty in surgery durations and the availability of downstream resources such as surgical intensive care unit (SICU) over multi-periods. The stoc...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 2010-11, Vol.206 (3), p.642-652 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 652 |
---|---|
container_issue | 3 |
container_start_page | 642 |
container_title | European journal of operational research |
container_volume | 206 |
creator | Min, Daiki Yih, Yuehwern |
description | The objective of this study is to generate an optimal surgery schedule of elective surgery patients with uncertain surgery operations, which includes uncertainty in surgery durations and the availability of downstream resources such as surgical intensive care unit (SICU) over multi-periods. The stochastic optimization is adapted and the sample average approximation (SAA) method is proposed for obtaining an optimal surgery schedule with respect to minimizing the total cost of patient costs and overtime costs. A computational experiment is presented to evaluate the performance of the proposed method. |
doi_str_mv | 10.1016/j.ejor.2010.03.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204144964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221710002134</els_id><sourcerecordid>2021439361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-63b6537d8a9b49b34f1a970eaba28b852688c0b4e26343b239e4b9dae9e68c043</originalsourceid><addsrcrecordid>eNp9UdtKxDAQDaLgevkBn4rgY9fcmrbgi4g3FETU5zBNZzVlt61Ju7J_79QVHw2cSTg5ZzKcMHYi-FxwYc6bOTZdmEtOBFdzLvQOm4kil6kpDN9lM67yPJVS5PvsIMaGcy4ykc3Y84v7wHpc-vY9wSW6wa8xiWN4x7BJxrbGQNVhGMC3wyaBtk7q7quNQ0BYJQ56cJ54103UpIlHbG8By4jHv_she7u5fr26Sx-fbu-vLh9TpzMzpEZVJlN5XUBZ6bJSeiGgzDlCBbKoikyaonC80iiN0qqSqkRdlTVgiYYutDpkp9u-feg-R4yDbboxtPSklVwLrUszieRW5EIXY8CF7YNfQdhYwe2UnG3slJydkrNcWUqOTA9bU8Ae3Z8DaZEUo11bBZIbqpufE1kVeIIi9ASjpTWZtB_Dirqd_c4J0cFyEaB1Pv51lTLPRKkV6S62OqTQ1h6Djc4jZV_7QP9i687_N_Q3xpqecg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204144964</pqid></control><display><type>article</type><title>Scheduling elective surgery under uncertainty and downstream capacity constraints</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Min, Daiki ; Yih, Yuehwern</creator><creatorcontrib>Min, Daiki ; Yih, Yuehwern</creatorcontrib><description>The objective of this study is to generate an optimal surgery schedule of elective surgery patients with uncertain surgery operations, which includes uncertainty in surgery durations and the availability of downstream resources such as surgical intensive care unit (SICU) over multi-periods. The stochastic optimization is adapted and the sample average approximation (SAA) method is proposed for obtaining an optimal surgery schedule with respect to minimizing the total cost of patient costs and overtime costs. A computational experiment is presented to evaluate the performance of the proposed method.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2010.03.014</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Approximation ; Biological and medical sciences ; Downstream resource constraint ; Economy. Management ; Elective surgery ; Exact sciences and technology ; Health and social institutions ; Mathematical programming ; Medical sciences ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; Scheduling ; Scheduling, sequencing ; Stochastic models ; Stochastic programming ; Studies ; Surgery ; Surgery scheduling problem ; Surgery scheduling problem Downstream resource constraint Stochastic programming ; Uncertainty</subject><ispartof>European journal of operational research, 2010-11, Vol.206 (3), p.642-652</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Nov 1, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-63b6537d8a9b49b34f1a970eaba28b852688c0b4e26343b239e4b9dae9e68c043</citedby><cites>FETCH-LOGICAL-c456t-63b6537d8a9b49b34f1a970eaba28b852688c0b4e26343b239e4b9dae9e68c043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2010.03.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,4012,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22751943$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a206_3ay_3a2010_3ai_3a3_3ap_3a642-652.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Min, Daiki</creatorcontrib><creatorcontrib>Yih, Yuehwern</creatorcontrib><title>Scheduling elective surgery under uncertainty and downstream capacity constraints</title><title>European journal of operational research</title><description>The objective of this study is to generate an optimal surgery schedule of elective surgery patients with uncertain surgery operations, which includes uncertainty in surgery durations and the availability of downstream resources such as surgical intensive care unit (SICU) over multi-periods. The stochastic optimization is adapted and the sample average approximation (SAA) method is proposed for obtaining an optimal surgery schedule with respect to minimizing the total cost of patient costs and overtime costs. A computational experiment is presented to evaluate the performance of the proposed method.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Biological and medical sciences</subject><subject>Downstream resource constraint</subject><subject>Economy. Management</subject><subject>Elective surgery</subject><subject>Exact sciences and technology</subject><subject>Health and social institutions</subject><subject>Mathematical programming</subject><subject>Medical sciences</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>Scheduling</subject><subject>Scheduling, sequencing</subject><subject>Stochastic models</subject><subject>Stochastic programming</subject><subject>Studies</subject><subject>Surgery</subject><subject>Surgery scheduling problem</subject><subject>Surgery scheduling problem Downstream resource constraint Stochastic programming</subject><subject>Uncertainty</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UdtKxDAQDaLgevkBn4rgY9fcmrbgi4g3FETU5zBNZzVlt61Ju7J_79QVHw2cSTg5ZzKcMHYi-FxwYc6bOTZdmEtOBFdzLvQOm4kil6kpDN9lM67yPJVS5PvsIMaGcy4ykc3Y84v7wHpc-vY9wSW6wa8xiWN4x7BJxrbGQNVhGMC3wyaBtk7q7quNQ0BYJQ56cJ54103UpIlHbG8By4jHv_she7u5fr26Sx-fbu-vLh9TpzMzpEZVJlN5XUBZ6bJSeiGgzDlCBbKoikyaonC80iiN0qqSqkRdlTVgiYYutDpkp9u-feg-R4yDbboxtPSklVwLrUszieRW5EIXY8CF7YNfQdhYwe2UnG3slJydkrNcWUqOTA9bU8Ae3Z8DaZEUo11bBZIbqpufE1kVeIIi9ASjpTWZtB_Dirqd_c4J0cFyEaB1Pv51lTLPRKkV6S62OqTQ1h6Djc4jZV_7QP9i687_N_Q3xpqecg</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Min, Daiki</creator><creator>Yih, Yuehwern</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101101</creationdate><title>Scheduling elective surgery under uncertainty and downstream capacity constraints</title><author>Min, Daiki ; Yih, Yuehwern</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-63b6537d8a9b49b34f1a970eaba28b852688c0b4e26343b239e4b9dae9e68c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Biological and medical sciences</topic><topic>Downstream resource constraint</topic><topic>Economy. Management</topic><topic>Elective surgery</topic><topic>Exact sciences and technology</topic><topic>Health and social institutions</topic><topic>Mathematical programming</topic><topic>Medical sciences</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>Scheduling</topic><topic>Scheduling, sequencing</topic><topic>Stochastic models</topic><topic>Stochastic programming</topic><topic>Studies</topic><topic>Surgery</topic><topic>Surgery scheduling problem</topic><topic>Surgery scheduling problem Downstream resource constraint Stochastic programming</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Daiki</creatorcontrib><creatorcontrib>Yih, Yuehwern</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Min, Daiki</au><au>Yih, Yuehwern</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scheduling elective surgery under uncertainty and downstream capacity constraints</atitle><jtitle>European journal of operational research</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>206</volume><issue>3</issue><spage>642</spage><epage>652</epage><pages>642-652</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>The objective of this study is to generate an optimal surgery schedule of elective surgery patients with uncertain surgery operations, which includes uncertainty in surgery durations and the availability of downstream resources such as surgical intensive care unit (SICU) over multi-periods. The stochastic optimization is adapted and the sample average approximation (SAA) method is proposed for obtaining an optimal surgery schedule with respect to minimizing the total cost of patient costs and overtime costs. A computational experiment is presented to evaluate the performance of the proposed method.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2010.03.014</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 2010-11, Vol.206 (3), p.642-652 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_journals_204144964 |
source | RePEc; Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Approximation Biological and medical sciences Downstream resource constraint Economy. Management Elective surgery Exact sciences and technology Health and social institutions Mathematical programming Medical sciences Operational research and scientific management Operational research. Management science Optimization Public health. Hygiene Public health. Hygiene-occupational medicine Scheduling Scheduling, sequencing Stochastic models Stochastic programming Studies Surgery Surgery scheduling problem Surgery scheduling problem Downstream resource constraint Stochastic programming Uncertainty |
title | Scheduling elective surgery under uncertainty and downstream capacity constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T11%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scheduling%20elective%20surgery%20under%20uncertainty%20and%20downstream%20capacity%20constraints&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Min,%20Daiki&rft.date=2010-11-01&rft.volume=206&rft.issue=3&rft.spage=642&rft.epage=652&rft.pages=642-652&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2010.03.014&rft_dat=%3Cproquest_cross%3E2021439361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204144964&rft_id=info:pmid/&rft_els_id=S0377221710002134&rfr_iscdi=true |