Scheduling elective surgery under uncertainty and downstream capacity constraints

The objective of this study is to generate an optimal surgery schedule of elective surgery patients with uncertain surgery operations, which includes uncertainty in surgery durations and the availability of downstream resources such as surgical intensive care unit (SICU) over multi-periods. The stoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2010-11, Vol.206 (3), p.642-652
Hauptverfasser: Min, Daiki, Yih, Yuehwern
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 652
container_issue 3
container_start_page 642
container_title European journal of operational research
container_volume 206
creator Min, Daiki
Yih, Yuehwern
description The objective of this study is to generate an optimal surgery schedule of elective surgery patients with uncertain surgery operations, which includes uncertainty in surgery durations and the availability of downstream resources such as surgical intensive care unit (SICU) over multi-periods. The stochastic optimization is adapted and the sample average approximation (SAA) method is proposed for obtaining an optimal surgery schedule with respect to minimizing the total cost of patient costs and overtime costs. A computational experiment is presented to evaluate the performance of the proposed method.
doi_str_mv 10.1016/j.ejor.2010.03.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204144964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221710002134</els_id><sourcerecordid>2021439361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-63b6537d8a9b49b34f1a970eaba28b852688c0b4e26343b239e4b9dae9e68c043</originalsourceid><addsrcrecordid>eNp9UdtKxDAQDaLgevkBn4rgY9fcmrbgi4g3FETU5zBNZzVlt61Ju7J_79QVHw2cSTg5ZzKcMHYi-FxwYc6bOTZdmEtOBFdzLvQOm4kil6kpDN9lM67yPJVS5PvsIMaGcy4ykc3Y84v7wHpc-vY9wSW6wa8xiWN4x7BJxrbGQNVhGMC3wyaBtk7q7quNQ0BYJQ56cJ54103UpIlHbG8By4jHv_she7u5fr26Sx-fbu-vLh9TpzMzpEZVJlN5XUBZ6bJSeiGgzDlCBbKoikyaonC80iiN0qqSqkRdlTVgiYYutDpkp9u-feg-R4yDbboxtPSklVwLrUszieRW5EIXY8CF7YNfQdhYwe2UnG3slJydkrNcWUqOTA9bU8Ae3Z8DaZEUo11bBZIbqpufE1kVeIIi9ASjpTWZtB_Dirqd_c4J0cFyEaB1Pv51lTLPRKkV6S62OqTQ1h6Djc4jZV_7QP9i687_N_Q3xpqecg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204144964</pqid></control><display><type>article</type><title>Scheduling elective surgery under uncertainty and downstream capacity constraints</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Min, Daiki ; Yih, Yuehwern</creator><creatorcontrib>Min, Daiki ; Yih, Yuehwern</creatorcontrib><description>The objective of this study is to generate an optimal surgery schedule of elective surgery patients with uncertain surgery operations, which includes uncertainty in surgery durations and the availability of downstream resources such as surgical intensive care unit (SICU) over multi-periods. The stochastic optimization is adapted and the sample average approximation (SAA) method is proposed for obtaining an optimal surgery schedule with respect to minimizing the total cost of patient costs and overtime costs. A computational experiment is presented to evaluate the performance of the proposed method.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2010.03.014</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Approximation ; Biological and medical sciences ; Downstream resource constraint ; Economy. Management ; Elective surgery ; Exact sciences and technology ; Health and social institutions ; Mathematical programming ; Medical sciences ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; Scheduling ; Scheduling, sequencing ; Stochastic models ; Stochastic programming ; Studies ; Surgery ; Surgery scheduling problem ; Surgery scheduling problem Downstream resource constraint Stochastic programming ; Uncertainty</subject><ispartof>European journal of operational research, 2010-11, Vol.206 (3), p.642-652</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Nov 1, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-63b6537d8a9b49b34f1a970eaba28b852688c0b4e26343b239e4b9dae9e68c043</citedby><cites>FETCH-LOGICAL-c456t-63b6537d8a9b49b34f1a970eaba28b852688c0b4e26343b239e4b9dae9e68c043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2010.03.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,4012,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22751943$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a206_3ay_3a2010_3ai_3a3_3ap_3a642-652.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Min, Daiki</creatorcontrib><creatorcontrib>Yih, Yuehwern</creatorcontrib><title>Scheduling elective surgery under uncertainty and downstream capacity constraints</title><title>European journal of operational research</title><description>The objective of this study is to generate an optimal surgery schedule of elective surgery patients with uncertain surgery operations, which includes uncertainty in surgery durations and the availability of downstream resources such as surgical intensive care unit (SICU) over multi-periods. The stochastic optimization is adapted and the sample average approximation (SAA) method is proposed for obtaining an optimal surgery schedule with respect to minimizing the total cost of patient costs and overtime costs. A computational experiment is presented to evaluate the performance of the proposed method.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Biological and medical sciences</subject><subject>Downstream resource constraint</subject><subject>Economy. Management</subject><subject>Elective surgery</subject><subject>Exact sciences and technology</subject><subject>Health and social institutions</subject><subject>Mathematical programming</subject><subject>Medical sciences</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>Scheduling</subject><subject>Scheduling, sequencing</subject><subject>Stochastic models</subject><subject>Stochastic programming</subject><subject>Studies</subject><subject>Surgery</subject><subject>Surgery scheduling problem</subject><subject>Surgery scheduling problem Downstream resource constraint Stochastic programming</subject><subject>Uncertainty</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UdtKxDAQDaLgevkBn4rgY9fcmrbgi4g3FETU5zBNZzVlt61Ju7J_79QVHw2cSTg5ZzKcMHYi-FxwYc6bOTZdmEtOBFdzLvQOm4kil6kpDN9lM67yPJVS5PvsIMaGcy4ykc3Y84v7wHpc-vY9wSW6wa8xiWN4x7BJxrbGQNVhGMC3wyaBtk7q7quNQ0BYJQ56cJ54103UpIlHbG8By4jHv_she7u5fr26Sx-fbu-vLh9TpzMzpEZVJlN5XUBZ6bJSeiGgzDlCBbKoikyaonC80iiN0qqSqkRdlTVgiYYutDpkp9u-feg-R4yDbboxtPSklVwLrUszieRW5EIXY8CF7YNfQdhYwe2UnG3slJydkrNcWUqOTA9bU8Ae3Z8DaZEUo11bBZIbqpufE1kVeIIi9ASjpTWZtB_Dirqd_c4J0cFyEaB1Pv51lTLPRKkV6S62OqTQ1h6Djc4jZV_7QP9i687_N_Q3xpqecg</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Min, Daiki</creator><creator>Yih, Yuehwern</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101101</creationdate><title>Scheduling elective surgery under uncertainty and downstream capacity constraints</title><author>Min, Daiki ; Yih, Yuehwern</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-63b6537d8a9b49b34f1a970eaba28b852688c0b4e26343b239e4b9dae9e68c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Biological and medical sciences</topic><topic>Downstream resource constraint</topic><topic>Economy. Management</topic><topic>Elective surgery</topic><topic>Exact sciences and technology</topic><topic>Health and social institutions</topic><topic>Mathematical programming</topic><topic>Medical sciences</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>Scheduling</topic><topic>Scheduling, sequencing</topic><topic>Stochastic models</topic><topic>Stochastic programming</topic><topic>Studies</topic><topic>Surgery</topic><topic>Surgery scheduling problem</topic><topic>Surgery scheduling problem Downstream resource constraint Stochastic programming</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Daiki</creatorcontrib><creatorcontrib>Yih, Yuehwern</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Min, Daiki</au><au>Yih, Yuehwern</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scheduling elective surgery under uncertainty and downstream capacity constraints</atitle><jtitle>European journal of operational research</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>206</volume><issue>3</issue><spage>642</spage><epage>652</epage><pages>642-652</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>The objective of this study is to generate an optimal surgery schedule of elective surgery patients with uncertain surgery operations, which includes uncertainty in surgery durations and the availability of downstream resources such as surgical intensive care unit (SICU) over multi-periods. The stochastic optimization is adapted and the sample average approximation (SAA) method is proposed for obtaining an optimal surgery schedule with respect to minimizing the total cost of patient costs and overtime costs. A computational experiment is presented to evaluate the performance of the proposed method.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2010.03.014</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2010-11, Vol.206 (3), p.642-652
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204144964
source RePEc; Access via ScienceDirect (Elsevier)
subjects Applied sciences
Approximation
Biological and medical sciences
Downstream resource constraint
Economy. Management
Elective surgery
Exact sciences and technology
Health and social institutions
Mathematical programming
Medical sciences
Operational research and scientific management
Operational research. Management science
Optimization
Public health. Hygiene
Public health. Hygiene-occupational medicine
Scheduling
Scheduling, sequencing
Stochastic models
Stochastic programming
Studies
Surgery
Surgery scheduling problem
Surgery scheduling problem Downstream resource constraint Stochastic programming
Uncertainty
title Scheduling elective surgery under uncertainty and downstream capacity constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T11%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scheduling%20elective%20surgery%20under%20uncertainty%20and%20downstream%20capacity%20constraints&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Min,%20Daiki&rft.date=2010-11-01&rft.volume=206&rft.issue=3&rft.spage=642&rft.epage=652&rft.pages=642-652&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2010.03.014&rft_dat=%3Cproquest_cross%3E2021439361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204144964&rft_id=info:pmid/&rft_els_id=S0377221710002134&rfr_iscdi=true