Distributed scheduling using simple learning machines
A new approach to develop parallel and distributed algorithms of scheduling tasks in parallel computers is proposed. A game theoretical model with the use of genetic-algorithms based learning machines called classifier systems as players in a game, serves as a theoretical framework of the approach....
Gespeichert in:
Veröffentlicht in: | European journal of operational research 1998-06, Vol.107 (2), p.401-413 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 413 |
---|---|
container_issue | 2 |
container_start_page | 401 |
container_title | European journal of operational research |
container_volume | 107 |
creator | SEREDYNSKI, F |
description | A new approach to develop parallel and distributed algorithms of scheduling tasks in parallel computers is proposed. A game theoretical model with the use of genetic-algorithms based learning machines called classifier systems as players in a game, serves as a theoretical framework of the approach. Experimental study of such a system shows its self-organizing features and the ability of collective behaviour. Following this approach a parallel and distributed scheduler is described. A simple version of the proposed scheduler has been implemented. Results of the experimental study of the scheduler demonstrate its high performance. |
doi_str_mv | 10.1016/S0377-2217(97)00342-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204144342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221797003421</els_id><sourcerecordid>37997546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-b4af9afb3d2c89c1609f39d017f13ecd32cc485d1d33c16eba4a6c8b538ec2d03</originalsourceid><addsrcrecordid>eNqFUE1r3DAQFaGBbJP8hMBSemgPbjSSbMunUjZtUhLIIclZyKNxV4vXdiU7kH9feR32WsGbkdB78_EYuwL-DTgU109clmUmBJRfqvIr51KJDE7YCnQpskIX_ANbHSln7GOMO8455JCvWH7j4xh8PY3k1hG35KbWd3_WU5xj9PuhpXVLNnTze29x6zuKF-y0sW2ky_d8zl5-_Xze3GUPj7e_Nz8eMlQSxqxWtqlsU0snUFcIBa8aWTkOZQOS0EmBqHTuwEmZfqm2yhao61xqQuG4PGeflrpD6P9OFEez66fQpZZGcAVKpVUTKV9IGPoYAzVmCH5vw5sBbmaDzMEgM29vqtIcDDKQdPeLLtBAeBRROrs-UDSvRlrgZYpv862qdEo-QSQMCYqDUSDNdtynap_fR7URbdsE26GPx6pCaq1zlWjfFxol2149BRPRU4fkfCAcjev9f8b-B3q6kxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204144342</pqid></control><display><type>article</type><title>Distributed scheduling using simple learning machines</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>RePEc</source><creator>SEREDYNSKI, F</creator><creatorcontrib>SEREDYNSKI, F</creatorcontrib><description>A new approach to develop parallel and distributed algorithms of scheduling tasks in parallel computers is proposed. A game theoretical model with the use of genetic-algorithms based learning machines called classifier systems as players in a game, serves as a theoretical framework of the approach. Experimental study of such a system shows its self-organizing features and the ability of collective behaviour. Following this approach a parallel and distributed scheduler is described. A simple version of the proposed scheduler has been implemented. Results of the experimental study of the scheduler demonstrate its high performance.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/S0377-2217(97)00342-1</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptive processes ; Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Distributed artificial intelligence ; Exact sciences and technology ; Game theory ; Learning and adaptive systems ; Operational research and scientific management ; Operational research. Management science ; Parallel processing ; Scheduling ; Scheduling, sequencing ; Software ; Studies</subject><ispartof>European journal of operational research, 1998-06, Vol.107 (2), p.401-413</ispartof><rights>1998 Elsevier Science B.V.</rights><rights>1998 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jun 1, 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-b4af9afb3d2c89c1609f39d017f13ecd32cc485d1d33c16eba4a6c8b538ec2d03</citedby><cites>FETCH-LOGICAL-c431t-b4af9afb3d2c89c1609f39d017f13ecd32cc485d1d33c16eba4a6c8b538ec2d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0377-2217(97)00342-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,4008,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2388854$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a107_3ay_3a1998_3ai_3a2_3ap_3a401-413.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>SEREDYNSKI, F</creatorcontrib><title>Distributed scheduling using simple learning machines</title><title>European journal of operational research</title><description>A new approach to develop parallel and distributed algorithms of scheduling tasks in parallel computers is proposed. A game theoretical model with the use of genetic-algorithms based learning machines called classifier systems as players in a game, serves as a theoretical framework of the approach. Experimental study of such a system shows its self-organizing features and the ability of collective behaviour. Following this approach a parallel and distributed scheduler is described. A simple version of the proposed scheduler has been implemented. Results of the experimental study of the scheduler demonstrate its high performance.</description><subject>Adaptive processes</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Distributed artificial intelligence</subject><subject>Exact sciences and technology</subject><subject>Game theory</subject><subject>Learning and adaptive systems</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Parallel processing</subject><subject>Scheduling</subject><subject>Scheduling, sequencing</subject><subject>Software</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUE1r3DAQFaGBbJP8hMBSemgPbjSSbMunUjZtUhLIIclZyKNxV4vXdiU7kH9feR32WsGbkdB78_EYuwL-DTgU109clmUmBJRfqvIr51KJDE7YCnQpskIX_ANbHSln7GOMO8455JCvWH7j4xh8PY3k1hG35KbWd3_WU5xj9PuhpXVLNnTze29x6zuKF-y0sW2ky_d8zl5-_Xze3GUPj7e_Nz8eMlQSxqxWtqlsU0snUFcIBa8aWTkOZQOS0EmBqHTuwEmZfqm2yhao61xqQuG4PGeflrpD6P9OFEez66fQpZZGcAVKpVUTKV9IGPoYAzVmCH5vw5sBbmaDzMEgM29vqtIcDDKQdPeLLtBAeBRROrs-UDSvRlrgZYpv862qdEo-QSQMCYqDUSDNdtynap_fR7URbdsE26GPx6pCaq1zlWjfFxol2149BRPRU4fkfCAcjev9f8b-B3q6kxw</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>SEREDYNSKI, F</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980601</creationdate><title>Distributed scheduling using simple learning machines</title><author>SEREDYNSKI, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-b4af9afb3d2c89c1609f39d017f13ecd32cc485d1d33c16eba4a6c8b538ec2d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Adaptive processes</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Distributed artificial intelligence</topic><topic>Exact sciences and technology</topic><topic>Game theory</topic><topic>Learning and adaptive systems</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Parallel processing</topic><topic>Scheduling</topic><topic>Scheduling, sequencing</topic><topic>Software</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SEREDYNSKI, F</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SEREDYNSKI, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed scheduling using simple learning machines</atitle><jtitle>European journal of operational research</jtitle><date>1998-06-01</date><risdate>1998</risdate><volume>107</volume><issue>2</issue><spage>401</spage><epage>413</epage><pages>401-413</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>A new approach to develop parallel and distributed algorithms of scheduling tasks in parallel computers is proposed. A game theoretical model with the use of genetic-algorithms based learning machines called classifier systems as players in a game, serves as a theoretical framework of the approach. Experimental study of such a system shows its self-organizing features and the ability of collective behaviour. Following this approach a parallel and distributed scheduler is described. A simple version of the proposed scheduler has been implemented. Results of the experimental study of the scheduler demonstrate its high performance.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-2217(97)00342-1</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 1998-06, Vol.107 (2), p.401-413 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_journals_204144342 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; RePEc |
subjects | Adaptive processes Algorithms Applied sciences Artificial intelligence Computer science control theory systems Computer systems and distributed systems. User interface Distributed artificial intelligence Exact sciences and technology Game theory Learning and adaptive systems Operational research and scientific management Operational research. Management science Parallel processing Scheduling Scheduling, sequencing Software Studies |
title | Distributed scheduling using simple learning machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A04%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20scheduling%20using%20simple%20learning%20machines&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=SEREDYNSKI,%20F&rft.date=1998-06-01&rft.volume=107&rft.issue=2&rft.spage=401&rft.epage=413&rft.pages=401-413&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/S0377-2217(97)00342-1&rft_dat=%3Cproquest_cross%3E37997546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204144342&rft_id=info:pmid/&rft_els_id=S0377221797003421&rfr_iscdi=true |