Distributed scheduling using simple learning machines

A new approach to develop parallel and distributed algorithms of scheduling tasks in parallel computers is proposed. A game theoretical model with the use of genetic-algorithms based learning machines called classifier systems as players in a game, serves as a theoretical framework of the approach....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 1998-06, Vol.107 (2), p.401-413
1. Verfasser: SEREDYNSKI, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 413
container_issue 2
container_start_page 401
container_title European journal of operational research
container_volume 107
creator SEREDYNSKI, F
description A new approach to develop parallel and distributed algorithms of scheduling tasks in parallel computers is proposed. A game theoretical model with the use of genetic-algorithms based learning machines called classifier systems as players in a game, serves as a theoretical framework of the approach. Experimental study of such a system shows its self-organizing features and the ability of collective behaviour. Following this approach a parallel and distributed scheduler is described. A simple version of the proposed scheduler has been implemented. Results of the experimental study of the scheduler demonstrate its high performance.
doi_str_mv 10.1016/S0377-2217(97)00342-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204144342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221797003421</els_id><sourcerecordid>37997546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-b4af9afb3d2c89c1609f39d017f13ecd32cc485d1d33c16eba4a6c8b538ec2d03</originalsourceid><addsrcrecordid>eNqFUE1r3DAQFaGBbJP8hMBSemgPbjSSbMunUjZtUhLIIclZyKNxV4vXdiU7kH9feR32WsGbkdB78_EYuwL-DTgU109clmUmBJRfqvIr51KJDE7YCnQpskIX_ANbHSln7GOMO8455JCvWH7j4xh8PY3k1hG35KbWd3_WU5xj9PuhpXVLNnTze29x6zuKF-y0sW2ky_d8zl5-_Xze3GUPj7e_Nz8eMlQSxqxWtqlsU0snUFcIBa8aWTkOZQOS0EmBqHTuwEmZfqm2yhao61xqQuG4PGeflrpD6P9OFEez66fQpZZGcAVKpVUTKV9IGPoYAzVmCH5vw5sBbmaDzMEgM29vqtIcDDKQdPeLLtBAeBRROrs-UDSvRlrgZYpv862qdEo-QSQMCYqDUSDNdtynap_fR7URbdsE26GPx6pCaq1zlWjfFxol2149BRPRU4fkfCAcjev9f8b-B3q6kxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204144342</pqid></control><display><type>article</type><title>Distributed scheduling using simple learning machines</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>RePEc</source><creator>SEREDYNSKI, F</creator><creatorcontrib>SEREDYNSKI, F</creatorcontrib><description>A new approach to develop parallel and distributed algorithms of scheduling tasks in parallel computers is proposed. A game theoretical model with the use of genetic-algorithms based learning machines called classifier systems as players in a game, serves as a theoretical framework of the approach. Experimental study of such a system shows its self-organizing features and the ability of collective behaviour. Following this approach a parallel and distributed scheduler is described. A simple version of the proposed scheduler has been implemented. Results of the experimental study of the scheduler demonstrate its high performance.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/S0377-2217(97)00342-1</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptive processes ; Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Distributed artificial intelligence ; Exact sciences and technology ; Game theory ; Learning and adaptive systems ; Operational research and scientific management ; Operational research. Management science ; Parallel processing ; Scheduling ; Scheduling, sequencing ; Software ; Studies</subject><ispartof>European journal of operational research, 1998-06, Vol.107 (2), p.401-413</ispartof><rights>1998 Elsevier Science B.V.</rights><rights>1998 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jun 1, 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-b4af9afb3d2c89c1609f39d017f13ecd32cc485d1d33c16eba4a6c8b538ec2d03</citedby><cites>FETCH-LOGICAL-c431t-b4af9afb3d2c89c1609f39d017f13ecd32cc485d1d33c16eba4a6c8b538ec2d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0377-2217(97)00342-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,4008,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2388854$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a107_3ay_3a1998_3ai_3a2_3ap_3a401-413.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>SEREDYNSKI, F</creatorcontrib><title>Distributed scheduling using simple learning machines</title><title>European journal of operational research</title><description>A new approach to develop parallel and distributed algorithms of scheduling tasks in parallel computers is proposed. A game theoretical model with the use of genetic-algorithms based learning machines called classifier systems as players in a game, serves as a theoretical framework of the approach. Experimental study of such a system shows its self-organizing features and the ability of collective behaviour. Following this approach a parallel and distributed scheduler is described. A simple version of the proposed scheduler has been implemented. Results of the experimental study of the scheduler demonstrate its high performance.</description><subject>Adaptive processes</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Distributed artificial intelligence</subject><subject>Exact sciences and technology</subject><subject>Game theory</subject><subject>Learning and adaptive systems</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Parallel processing</subject><subject>Scheduling</subject><subject>Scheduling, sequencing</subject><subject>Software</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUE1r3DAQFaGBbJP8hMBSemgPbjSSbMunUjZtUhLIIclZyKNxV4vXdiU7kH9feR32WsGbkdB78_EYuwL-DTgU109clmUmBJRfqvIr51KJDE7YCnQpskIX_ANbHSln7GOMO8455JCvWH7j4xh8PY3k1hG35KbWd3_WU5xj9PuhpXVLNnTze29x6zuKF-y0sW2ky_d8zl5-_Xze3GUPj7e_Nz8eMlQSxqxWtqlsU0snUFcIBa8aWTkOZQOS0EmBqHTuwEmZfqm2yhao61xqQuG4PGeflrpD6P9OFEez66fQpZZGcAVKpVUTKV9IGPoYAzVmCH5vw5sBbmaDzMEgM29vqtIcDDKQdPeLLtBAeBRROrs-UDSvRlrgZYpv862qdEo-QSQMCYqDUSDNdtynap_fR7URbdsE26GPx6pCaq1zlWjfFxol2149BRPRU4fkfCAcjev9f8b-B3q6kxw</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>SEREDYNSKI, F</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980601</creationdate><title>Distributed scheduling using simple learning machines</title><author>SEREDYNSKI, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-b4af9afb3d2c89c1609f39d017f13ecd32cc485d1d33c16eba4a6c8b538ec2d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Adaptive processes</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Distributed artificial intelligence</topic><topic>Exact sciences and technology</topic><topic>Game theory</topic><topic>Learning and adaptive systems</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Parallel processing</topic><topic>Scheduling</topic><topic>Scheduling, sequencing</topic><topic>Software</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SEREDYNSKI, F</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SEREDYNSKI, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed scheduling using simple learning machines</atitle><jtitle>European journal of operational research</jtitle><date>1998-06-01</date><risdate>1998</risdate><volume>107</volume><issue>2</issue><spage>401</spage><epage>413</epage><pages>401-413</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>A new approach to develop parallel and distributed algorithms of scheduling tasks in parallel computers is proposed. A game theoretical model with the use of genetic-algorithms based learning machines called classifier systems as players in a game, serves as a theoretical framework of the approach. Experimental study of such a system shows its self-organizing features and the ability of collective behaviour. Following this approach a parallel and distributed scheduler is described. A simple version of the proposed scheduler has been implemented. Results of the experimental study of the scheduler demonstrate its high performance.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-2217(97)00342-1</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 1998-06, Vol.107 (2), p.401-413
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204144342
source Elsevier ScienceDirect Journals Complete - AutoHoldings; RePEc
subjects Adaptive processes
Algorithms
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Distributed artificial intelligence
Exact sciences and technology
Game theory
Learning and adaptive systems
Operational research and scientific management
Operational research. Management science
Parallel processing
Scheduling
Scheduling, sequencing
Software
Studies
title Distributed scheduling using simple learning machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A04%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20scheduling%20using%20simple%20learning%20machines&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=SEREDYNSKI,%20F&rft.date=1998-06-01&rft.volume=107&rft.issue=2&rft.spage=401&rft.epage=413&rft.pages=401-413&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/S0377-2217(97)00342-1&rft_dat=%3Cproquest_cross%3E37997546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204144342&rft_id=info:pmid/&rft_els_id=S0377221797003421&rfr_iscdi=true