Chance constrained programming approaches to congestion in stochastic data envelopment analysis

The models described in this paper for treating congestion in DEA are extended by according them chance constrained programming formulations. The usual route used in chance constrained programming is followed here by replacing these stochastic models with their “deterministic equivalents.” This lead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2004-06, Vol.155 (2), p.487-501
Hauptverfasser: Cooper, William W., Deng, H., Huang, Zhimin, Li, Susan X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 501
container_issue 2
container_start_page 487
container_title European journal of operational research
container_volume 155
creator Cooper, William W.
Deng, H.
Huang, Zhimin
Li, Susan X.
description The models described in this paper for treating congestion in DEA are extended by according them chance constrained programming formulations. The usual route used in chance constrained programming is followed here by replacing these stochastic models with their “deterministic equivalents.” This leads to a class of non-linear problems. However, it is shown to be possible to avoid some of the need for dealing with these non-linear problems by identifying conditions under which they can be replaced by ordinary (deterministic) DEA models. Examples which illustrate possible uses of these approaches are also supplied in an Appendix A.
doi_str_mv 10.1016/S0377-2217(02)00901-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204143827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221702009013</els_id><sourcerecordid>665253071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-73b8b6a0136f619ca8ff91d6249db2119ba3af3a7d43fb3e7ac2eae71a33442f3</originalsourceid><addsrcrecordid>eNqFUU2LFDEUDKLguPoThOBJD60vH93pPokM6wcueFDP4XX69UyG6aRNsgPz783syF4NVF4eVBVFhbHXAt4LEN2Hn6CMaaQU5i3IdwADiEY9YRvRG9l0fQdP2eaR8py9yPkAAKIV7YbZ7R6DI-5iyCWhDzTxNcVdwmXxYcdxrRu6PWVe4oW1o1x8DNwHnkt0e6yr4xMW5BROdIzrQqFwDHg8Z59fsmczHjO9-jdv2O_Pt7-2X5u7H1--bT_dNU4rUxqjxn7sEITq5k4MDvt5HsTUST1MoxRiGFHhrNBMWs2jIoNOEpIRqJTWclY37M3Vt8b9c18z2kO8TzVEthK00KqXppLaK8mlmHOi2a7JL5jOVoC9VGkfqrSXnixI-1ClVVX3_apLtJJ7FFE9h5go25NVKNq23ucKCaDr8JdnxVqhe2Pb6rUvS3X7eHWj2sfJU7LZeaqfMPlErtgp-v_k-QvWupZn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204143827</pqid></control><display><type>article</type><title>Chance constrained programming approaches to congestion in stochastic data envelopment analysis</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Cooper, William W. ; Deng, H. ; Huang, Zhimin ; Li, Susan X.</creator><creatorcontrib>Cooper, William W. ; Deng, H. ; Huang, Zhimin ; Li, Susan X.</creatorcontrib><description>The models described in this paper for treating congestion in DEA are extended by according them chance constrained programming formulations. The usual route used in chance constrained programming is followed here by replacing these stochastic models with their “deterministic equivalents.” This leads to a class of non-linear problems. However, it is shown to be possible to avoid some of the need for dealing with these non-linear problems by identifying conditions under which they can be replaced by ordinary (deterministic) DEA models. Examples which illustrate possible uses of these approaches are also supplied in an Appendix A.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/S0377-2217(02)00901-3</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chance constrained programming ; Congestion ; Data envelopment analysis ; DEA (data envelopment analysis) ; Inefficiency ; Nonlinear programming ; Studies</subject><ispartof>European journal of operational research, 2004-06, Vol.155 (2), p.487-501</ispartof><rights>2003 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jun 1, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-73b8b6a0136f619ca8ff91d6249db2119ba3af3a7d43fb3e7ac2eae71a33442f3</citedby><cites>FETCH-LOGICAL-c437t-73b8b6a0136f619ca8ff91d6249db2119ba3af3a7d43fb3e7ac2eae71a33442f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0377-2217(02)00901-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,4009,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a155_3ay_3a2004_3ai_3a2_3ap_3a487-501.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooper, William W.</creatorcontrib><creatorcontrib>Deng, H.</creatorcontrib><creatorcontrib>Huang, Zhimin</creatorcontrib><creatorcontrib>Li, Susan X.</creatorcontrib><title>Chance constrained programming approaches to congestion in stochastic data envelopment analysis</title><title>European journal of operational research</title><description>The models described in this paper for treating congestion in DEA are extended by according them chance constrained programming formulations. The usual route used in chance constrained programming is followed here by replacing these stochastic models with their “deterministic equivalents.” This leads to a class of non-linear problems. However, it is shown to be possible to avoid some of the need for dealing with these non-linear problems by identifying conditions under which they can be replaced by ordinary (deterministic) DEA models. Examples which illustrate possible uses of these approaches are also supplied in an Appendix A.</description><subject>Chance constrained programming</subject><subject>Congestion</subject><subject>Data envelopment analysis</subject><subject>DEA (data envelopment analysis)</subject><subject>Inefficiency</subject><subject>Nonlinear programming</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUU2LFDEUDKLguPoThOBJD60vH93pPokM6wcueFDP4XX69UyG6aRNsgPz783syF4NVF4eVBVFhbHXAt4LEN2Hn6CMaaQU5i3IdwADiEY9YRvRG9l0fQdP2eaR8py9yPkAAKIV7YbZ7R6DI-5iyCWhDzTxNcVdwmXxYcdxrRu6PWVe4oW1o1x8DNwHnkt0e6yr4xMW5BROdIzrQqFwDHg8Z59fsmczHjO9-jdv2O_Pt7-2X5u7H1--bT_dNU4rUxqjxn7sEITq5k4MDvt5HsTUST1MoxRiGFHhrNBMWs2jIoNOEpIRqJTWclY37M3Vt8b9c18z2kO8TzVEthK00KqXppLaK8mlmHOi2a7JL5jOVoC9VGkfqrSXnixI-1ClVVX3_apLtJJ7FFE9h5go25NVKNq23ucKCaDr8JdnxVqhe2Pb6rUvS3X7eHWj2sfJU7LZeaqfMPlErtgp-v_k-QvWupZn</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Cooper, William W.</creator><creator>Deng, H.</creator><creator>Huang, Zhimin</creator><creator>Li, Susan X.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040601</creationdate><title>Chance constrained programming approaches to congestion in stochastic data envelopment analysis</title><author>Cooper, William W. ; Deng, H. ; Huang, Zhimin ; Li, Susan X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-73b8b6a0136f619ca8ff91d6249db2119ba3af3a7d43fb3e7ac2eae71a33442f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Chance constrained programming</topic><topic>Congestion</topic><topic>Data envelopment analysis</topic><topic>DEA (data envelopment analysis)</topic><topic>Inefficiency</topic><topic>Nonlinear programming</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, William W.</creatorcontrib><creatorcontrib>Deng, H.</creatorcontrib><creatorcontrib>Huang, Zhimin</creatorcontrib><creatorcontrib>Li, Susan X.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, William W.</au><au>Deng, H.</au><au>Huang, Zhimin</au><au>Li, Susan X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chance constrained programming approaches to congestion in stochastic data envelopment analysis</atitle><jtitle>European journal of operational research</jtitle><date>2004-06-01</date><risdate>2004</risdate><volume>155</volume><issue>2</issue><spage>487</spage><epage>501</epage><pages>487-501</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>The models described in this paper for treating congestion in DEA are extended by according them chance constrained programming formulations. The usual route used in chance constrained programming is followed here by replacing these stochastic models with their “deterministic equivalents.” This leads to a class of non-linear problems. However, it is shown to be possible to avoid some of the need for dealing with these non-linear problems by identifying conditions under which they can be replaced by ordinary (deterministic) DEA models. Examples which illustrate possible uses of these approaches are also supplied in an Appendix A.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-2217(02)00901-3</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2004-06, Vol.155 (2), p.487-501
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204143827
source RePEc; Access via ScienceDirect (Elsevier)
subjects Chance constrained programming
Congestion
Data envelopment analysis
DEA (data envelopment analysis)
Inefficiency
Nonlinear programming
Studies
title Chance constrained programming approaches to congestion in stochastic data envelopment analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A38%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chance%20constrained%20programming%20approaches%20to%20congestion%20in%20stochastic%20data%20envelopment%20analysis&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Cooper,%20William%20W.&rft.date=2004-06-01&rft.volume=155&rft.issue=2&rft.spage=487&rft.epage=501&rft.pages=487-501&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/S0377-2217(02)00901-3&rft_dat=%3Cproquest_cross%3E665253071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204143827&rft_id=info:pmid/&rft_els_id=S0377221702009013&rfr_iscdi=true